Page 1

[bookmark: _Hlk485556097][bookmark: OLE_LINK56]3GPP TSG RAN WG1 Meeting #90 							R1- 1712257
[bookmark: _GoBack]Prague, Czechia 21th – 25th August 2017

[bookmark: Source]Agenda item:		6.1.4.2.1
Source: 				Tsofun Algorithm
Title: 					FAR-Preserving Polar Code Construction and Decoding Algorithm
for Early Termination
[bookmark: DocumentFor]Document for:		Discussion/Decision
Introduction
In RAN1#89 meeting, the following agreement was reached [1] regarding polar code construction for Early Termination:
Agreement:
· For DL:
· J’ = 3 or 6, to be downselected at June adhoc
· J’’ = 0
· At least some of the J + J’ bits are appended
· FFS until June adhoc:
· how the J + J’ bits are obtained
· If J’=6, working assumption that at least some of the J + J’ bits are distributed (including to support early termination in the code construction) (Consideration of J’=6 proposals without distributed J+J’ bits are not precluded.)
· If J’=3, FFS until June adhoc whether some of the J + J’ bits are distributed (including to support early termination in the code construction)
· Consideration of distribution of bits shall consider complexity versus benefit and comparison to implementable purely implementation based methods for early termination

[bookmark: OLE_LINK134][bookmark: OLE_LINK79][bookmark: OLE_LINK80]In RAN1-NR-AH#2 meeting, in light of major disagreements among companies, the following decisions were made [2] to narrow down the possibilities:
Conclusion:
· RAN1 will work on a code construction based solution to deliver early termination benefits while achieving the FAR and BLER targets with acceptable complexity at least for the DL
· Revisit UL after designing the DL solution.

[bookmark: OLE_LINK77]Agreement:
· [bookmark: OLE_LINK76]All companies work together to design for the DL a Single CRC polynomial + Interleaver scheme to deliver early termination benefits while achieving the FAR (in presence of AWGN, and in presence of random QPSK, and undetected errors in intended user’s codeword), and BLER targets with acceptable complexity and latency.
· Working assumption that the CRC length is 19 bits, to be finalised as part of the design, taking into account the number of blind decodes or hypotheses to be tested.
· Longer CRCs will be considered if required to meet the FAR target
· For DL for K+nFAR>=12, and for UL where K+nFAR>22, J+J’ = nFAR + 3
· For UL, where 12<=K+nFAR<=22, J+J’ = nFAR + 6, comprising 3 parity bits and nFAR + 3 additional CRC bits
Note: K is the number of payload information bits without CRC or parity bits
Note: nFAR may be zero in some circumstances.
[bookmark: OLE_LINK55]Note: UE specific scrambling is not precluded and will be considered separately.

The recent agreement in RAN1 adopted polar code construction using a single CRC polynomial + Interleaver (implicitly based on the Distributed-CRC scheme in [4], but not necessarily requiring its implementation), was based on two misconceptions:
1. Distributed-CRC scheme always achieves FAR target;
2. Other Code construction schemes (such as multiple Segmented CRCs) cannot satisfy FAR requirement.
The first misconception was refuted during consequent discussions in the adhoc meeting (see also [7] and [8]).
The reason for the second misconception was the fact that the specific constructions presented in the adhoc meeting were mostly designed for optimizing Early Termination benefits, at the cost of some limited FAR degradation. The segmented scheme itself, however, is flexible enough to construct codes that satisfy FAR target.
[bookmark: OLE_LINK92]In this contribution, we focus on polar code construction for eMBB DL control channels to facilitate Early Termination (abbreviated ET in this document). We extend the Split-CRC code construction proposed in [3], this time focusing on achieving the FAR target, and propose two variants (both compatible with RAN1 agreement):
1. A simple scheme induced from the CRC interleaving of Distributed-CRC construction [4];
2. Optimized Split-CRC construction, based on a low-cost profiling algorithm, on a per-code basis.
We profile the two proposed schemes, and analyze their achievable decoding latency and complexity savings (further referred to as “ET gains” in this document), using a realistic modeling of practical polar decoder architectures [5]. In addition, we show the achievable ET performance of a combined method, using both Split-CRC and a complementary scheme based on placing UE-ID on frozen bits (proposed and analyzed in a parallel contribution by Tsofun [6]).

Notations:
M			codeword length in bits (after rate-matching)
N 			mother polar code size (a power of 2)
K 			information payload size in bits (not including CRC)
C = J+J’ 	overall number of CRC bits
C1 < C	number of distributed CRC bits
C2=C-C1	number of appended CRC bits
K’=K+C	number of non-frozen bits
 		maximal list size
		corresponds to a FAR requirement (of single decoding attempt) of

[bookmark: OLE_LINK2]Extension of Split-CRC Polar Code Construction
The Split-CRC polar code construction divides the (J+J’) CRC bits into two subsets of CRC bits of different sizes: a small (distributed) CRC subset whose bits are distributed in the middle of the information payload (and used for error detection and allowing for ET), and the main (larger) subset, which is appended as a continuous CRC block to the information end (and used for error correction and error detection). The main (second) CRC subset encodes and protects all the preceding information block, including the bits of the first CRC subset. Values of CRC bits in the first (distributed) CRC subset are not produced by independent CRC polynomial, but rather as an intermediate result of encoding with the second (main) CRC. The scheme is proposed for evaluation in DL control transmission, where ET is an important design consideration.
The following notations will be used in the context of the proposed construction scheme:
· – number of distributed CRC bits
· – number of bits in the appended (main) CRC block; namely
· – indices of distributed CRC bits in the non-frozen information payload;
for simplicity, we are using one-based indexing (namely, index 1 indicates the first non-frozen bit)
· – number of information bits preceding the first distributed CRC bit
· – number of information bits between distributed CRC bits and
· – number of information bits between the last distributed CRC bit and the main CRC block
· – CRC polynomial of degree , used for calculating all CRC bits during code construction

Figure 1 illustrates the composition of the non-frozen bit channels, with yellow blocks denoting CRC. This distributed CRC construction is used in construction Variant 1, described in Section 3.1.
[image:]
[bookmark: _Ref488250587][bookmark: OLE_LINK4]Figure 1. Illustration of the composition of the non-frozen payload, distributed Split CRC

Figure 2 illustrates the special case where all distributed CRC bits are grouped in a continuous block. This is a construction similar to [3], and is used in construction Variant 2, described in Section 3.2.
[image:]
[bookmark: _Ref488250867]Figure 2. Illustration of the composition of the non-frozen payload, continuous – bit embedded CRC block

Note that the main difference of current scheme from the construction in [3] is a generalization, allowing to distribute CRC bits, and not necessarily keep them in a continuous block.
Also note that Split-CRC code construction adheres to the construction framework agreed in RAN1, as all the CRC bits are produced using the same CRC polynomial, and in addition the distribution of the CRC bits can be viewed as an interleaving operation. Note, however, that no interleaving is applied to the information payload itself, thus significantly simplifying the implementation.

Encoding
Split – CRC Polar code is constructed according to the following steps:
1. Using the sequence design of choice, construct a (M,K’) polar code, and determine the locations of K’=K+C non-frozen bit channels.
2. Allocate bits at locations in the non-frozen payload for distributed CRC bits.
3. According to the distributed bit allocation, split the information payload into blocks[footnoteRef:2] of sizes , such that . [2: Note: empty blocks are not precluded]

4. Select bits from the UE-ID[footnoteRef:3] (or a function of it); exact selection FFS. [3: Assuming UE-specific DCI, the XOR pattern for common DCI is FFS; precise choice of the bits from UE-ID is FFS.]

5. Encode the first information block (bits of the information payload), using the CRC polynomial , and copy it to the first bits of the non-frozen payload.
6. For :
a. Take the least significant bit of the intermediate CRC LFSR state (of size bits), corresponding to power zero of the CRC state polynomial, and XOR it with the ’th selected bit from the UE-ID. The resulting bit should be appended to the non-frozen payload (i.e. placed in location), as the ’th distributed CRC bit.
b. Encode the CRC bit obtained in previous step, using the CRC polynomial (preserving its past state).
c. [bookmark: OLE_LINK16]Encode the ’th information block (bits of the information payload), using the CRC polynomial (preserving its past state), and append it to the non-frozen payload.
7. Take the -bit CRC result, XOR it with bits from the UE-ID[footnoteRef:4]. The resulting -bit binary word is the second CRC block, and shall be appended to the end of the non-frozen payload. [4: Same comment as above. In addition, note that all bits of the UE-ID have to be XOR’ed with either bits of the first or the second CRC subset (or both).]

8. [bookmark: OLE_LINK75]Map the obtained K’ non-frozen bits to their allocated locations in the polar information word, and proceed with standard encoding using Arikan kernel.

[bookmark: _Ref485646216][bookmark: OLE_LINK14]Decoding
Split – CRC Polar code is decoded according to the following steps:
1. Decode the polar code, using a decoding algorithm of choice, treating it as if it were a regular CA-Polar code with information payload size of) bits and a single appended CRC of size bits.
2. For :
a. Wait until bits of the non-frozen payload are decoded (namely, when the ’th distributed CRC bit is reached), and all the decoding paths (candidates in the list) are encoded with the CRC polynomial .
b. For each decoding path, copy the value of the least significant bit of the intermediate CRC LFSR state (corresponding to power zero of the CRC state polynomial), and XOR it with the corresponding selected ’th bit of UE-ID. The result (per decoding path) is called the “expected CRC bit”.
c. Upon decoding the following ’th distributed CRC bit, compare (for each decoding path) the decoded bit to the “expected CRC bit” values (corresponding to the predecessor decoding path).
d. Mark each decoding path that failed the CRC check as an “invalid candidate”[footnoteRef:5]. Upon each subsequent step of decoding an information bit / block, mark each decoding path which predecessor is marked “invalid candidate”, as invalid, as well. [5: Note: no path pruning / list reduction based on CRC result may be done, since this may degrade FAR performance]

3. Proceed with decoding the rest of the non-frozen payload
4. If at any decoding stage, all decoding paths are marked as “invalid candidates”, terminate decoding and declare an error.
5. After SCL decoding ends, select the best decoding path that satisfies the -bit CRC (XOR’ed with the corresponding UE-ID values). If that decoding path is marked as “invalid candidate”, declare decoding failure[footnoteRef:6]. [6: Choosing the best decoding path that passes CRC and is not marked invalid may degrade FAR performance]

Proposed Split-CRC Constructions
In this section, we propose two variants of Split-CRC code construction:
1. Variant 1: a simplified scheme following the CRC interleaving of Distributed-CRC construction [4].
2. Variant 2: Optimized Split-CRC construction, based on a low-cost profiling algorithm, on a per-code basis.
a. The optimization algorithm itself is described in Subsection 3.2.3.
b. Unlike [3], where we focused on optimizing ET gains at the possible price of FAR penalty, the optimization scheme guarantees no FAR degradation.
c. We believe this scheme allows us to achieve the best ET gains possible for a parity – based polar code construction (that satisfies FAR requirement).

For both construction variants, the following values are proposed for DL control channels:
· [bookmark: OLE_LINK35][bookmark: OLE_LINK17][bookmark: OLE_LINK18]Under working assumptions for DL evaluations, =16, thus C=J+J’==19 bits
· ; bits
· The 14-bit CRC polynomial is g(x) = x^14 + x^12 + x^8 + x^6 + x^4 + x + 1 (0x28A9)

[bookmark: _Ref488251029]Variant 1 – Placing C1 CRC bits at Distributed-CRC Positions
In this construction variant, the locations of distributed CRC bits are determined according to the procedure defined in [4]. In this contribution, we took the locations obtained for the default proposed values of CRC polynomial and . Note, however, that Variant 1 does not limit itself to the particular example evaluated in this contribution, but may rather be applied to any other possible proposed construction based on distribution of CRC bits and interleaving of information.
Table 1 below shows the locations of the first distributed CRC bits for several sample values of K, based on the interleaving sequence obtained for default 19-bit CRC polynomial[footnoteRef:7] 0xA2B79 and : [7: that showed mostly stable FAR performance]

	[bookmark: _Hlk488332570]Locations of first Distributed-CRC bits
	[bookmark: OLE_LINK96]Location #1 =
	Location #2=
	Location #3=
	Location #4=
	Location #5=
	Location #6=
	Location #7=
	Location #8=
	Location #9=

	[bookmark: _Hlk488332551]K = 48, K’ = 67
	27
	38
	44
	48
	50
	53
	55
	56
	57

	K = 64, K’ = 83
	30
	46
	54
	62
	65
	68
	71
	72
	73

	K = 80, K’ = 99
	38
	55
	66
	77
	80
	83
	87
	88
	89

	K = 128, K’ = 147
	62
	89
	107
	120
	125
	130
	135
	136
	137

	K = 200, K’ = 219
	87
	139
	163
	180
	192
	198
	207
	208
	209

[bookmark: _Ref488266034]Table 1. Summary of ET Gains of Embedded CRC – based construction
Cells in Table 1 that are colored red indicate bit positions that occur very late in the non-frozen payload (after more than two thirds of K’ bits), while cells colored orange indicate bit positions that occur late (after more than a half). Cells inside the bold borders indicate the locations of the distributed bits, as we propose.
It is easy to see that the ET gains achievable by this construction are very similar to those of the reference Distributed-CRC scheme, provided that the value of is large enough.
We also claim that for every scheme of Distributed-CRC, the proposed Variant 1 will achieve the same FAR performance[footnoteRef:8]. As clearly demonstrated in [8], the degradation in FAR performance is not only a matter of choosing the CRC polynomial, but mostly depends on the location of the distributed CRC bits. Therefore, the error detection capability of Variant 1, even though based on a reduced CRC polynomial, will achieve equivalent results. [8: Note, though, that as the performance of Distributed-CRC was not proven to always satisfy FAR target, we cannot guarantee it for Variant 1, either.]

Note: Variant 1 is not a recommended scheme. The main goal of its proposition is to show that this is an easier variant than reference Distributed-CRC, that achieves similar ET gains.

[bookmark: _Ref488251033][bookmark: _Ref488332424]Variant 2 – Optimized Split-CRC construction
In this construction variant, we seek to achieve optimized ET gains, and group all distributed CRC bits into a single continuous CRC block, appended after the first bits of the information payload. As explained in [3], distributing CRC bits in discontinuous locations is usually inefficient, and in the optimized construction we stick to using a continuous embedded CRC block. Note, though, that future generalizations of the scheme that consider distribution of CRC bits, are not precluded.
Figure 3 below illustrates the main optimization problem: placing the embedded CRC block in the non-frozen payload, or in other words, determining the value of . As shown in many contributions, placing CRC bits too early in the non-frozen payload increases the FAR penalty, while a conservative placement in a high location (closer to the payload end) may guarantee a good FAR, but can significantly reduce the gains of ET.
[image:]
[bookmark: _Ref488268002][bookmark: OLE_LINK101]Figure 3. Illustration of the optimization task for Variant 2 Split-CRC construction

As a consequence, our optimization problem is finding minimum that satisfies FAR performance requirement. Unfortunately, no closed-form expression was presented so far for determining this value based on the code parameters. From our experience, a simplified formulation based only on part of the code parameters (e.g. Distributed-CRC scheme, that only considers the value of K) can neither be optimal in terms of ET gains, nor can it guarantee meeting FAR target.
The naive and inefficient optimization, therefore, is following the method of trial and error, by manually adjusting the value of (per code), until FAR is target is met. The major drawback of such a method is the high effort required for optimization per each code, as very long simulations are required to verify FAR (for multiple SNR points). For current FAR target of 2-16 (per single blind decoding attempt), millions of frames have to be simulated for each attempted guess of value, per SNR point. Note that it is very probable that in the future a longer CRC will be chosen for DCI to meet an even lower FAR target, which will further increase the complexity of FAR simulations (and the overall optimization procedure).
In the next subsections, we propose an efficient heuristic solver to the optimization problem. By using this heuristic algorithm, it is realistic to find the optimal for each code configuration, at the cost of limited-duration simulations (shorter by orders of magnitude than the required simulation effort for brute-force FAR verification).

FAR Assessment for the Undetected Error Scenario
Let us concentrate on false alarm analysis in the problematic scenario of Undetected Error (FAR in this case is sometimes abbreviated as UER), namely the case of an intended transmission for the user, with a decoding error being erroneously recognized as a valid message (passing CRC error detection check).
The basic idea of the analysis is similar to the formula proposed in Appendix C of [9], but with some changes. Figure 4 below provides some intuition regarding the different possible scenarios for occurrence of false alarm. On top of the outline of the non-frozen payload (with yellow blocks denoting CRC subsets), the three dotted horizontal lines denote the progress of some decoding paths. Green color indicates the part, where decoding is correct (till that point), while red color indicates the path after some decoding error occurred. The red stars mark the location of first decoding error occurrence for each path.

[image:]
[bookmark: _Ref488276892][bookmark: OLE_LINK9]Figure 4. Illustration of scenarios of first error occurrence in several decoding paths

From the figure above, we can distinguish between three principally different error scenarios:
· The first decoding path (from the top) successfully decoded the first information block, as well as the distributed CRC block appended to it, and the first decoding error occurred during decoding of the second information block.
· This means that the first CRC cannot assist in detecting the decoding error, and as consequence, we can only rely on the second CRC.
 False alarm probability of such a path is the undetected error probability of the second CRC.
· The second decoding path (middle one) had a decoding error already during the first information block.
· This means that False alarm occurs if both of the CRCs do not detect the error.
 False alarm probability of this path approximately equals the product of FA probabilities of each CRC.
· The third decoding path (from the top) has the first error occurring inside the first embedded CRC block. Knowing the CRC error detection capability of an error burst of length up to its length[footnoteRef:9], it is guaranteed that the first CRC check will fail.
 False alarm probability of this path is zero. [9: Note that the error detection capability of the embedded CRC block (obtained via the main CRC polynomial) is similar to that of a -bit CRC.]

Summing it up, the equation for FAR per decoding path can be approximately written as:
[bookmark: OLE_LINK102]
Since we treat very low FA probabilities per decoding path, and the FA behaviour of different paths in a list is nearly independent, overall FAR is approximately the sum of FA probabilities of all paths (union bound on all paths):
[bookmark: OLE_LINK1]
Note that the probabilities of decoding error occurrence above are per incorrect decoding path that “survived” SCL decoding process till the end of the non-frozen payload. We also assume here that the CRC polynomials are “good enough” to provide for the random approximation, yielding the desired error detection probability.
[bookmark: OLE_LINK3]Knowing that target FAR requirement equals , we obtain:
[bookmark: OLE_LINK6]

Profiling Simulation Outline
[bookmark: OLE_LINK5]In order to allow the assessment of FAR for every possible value of , we need to obtain the distribution of first decoding error occurrence (per decoding path). This profiling has to be done for all SNRs in the “relevant region”. As shown in multiple contributions, the SNR region prone to FAR degradations is the transition area, where BLER goes from ~1 down to ~10-2÷10-3. The number of frames that need to be simulated for each SNR can be in the order of a few thousands to a few tens of thousands.
Observation 1: Split-CRC construction can be optimized (per code) to achieve the best possible ET gains, while preserving FAR target, using short-duration BLER simulations.

The profiling simulation should run on a (K’=K+C, N) Polar code, without CRC. For each SNR point, a histogram of the first decoding error location (given a decoding error occurred) is produced, by making the following steps (for each frame):
1. Draw a random source word of K’ bits; encode it with standard Arikan kernel; transmit the resultant codeword over a noisy channel (corresponding to the SNR currently checked).
2. Decode the received noisy codeword using an SCL Polar decoder (without CRC).
3. Upon decoding finish, the decoder should output the decoded K’ - bit payload for all decoding paths, sorted by their Path-Metric (PM) score.
4. If one of the decoding paths contains the correct source word, remove it and all other decoding paths with a smaller PM score[footnoteRef:10]. [10: In case a correct decoding path is present, false alarm can only occur for erroneous decoding paths with higher PM score.]

5. For all remaining erroneous decoding paths in the list, find the location of the first decoding error, and add it to the location histogram.

Upon finalizing the simulations, normalize (for each SNR) the resultant histograms by (), obtaining the (non-conditional) probability distribution of first decoding error location (per decoding path that can cause FAR, per SNR).

[bookmark: _Ref488263031][bookmark: OLE_LINK8][bookmark: OLE_LINK100]Optimization Outline
Let us denote by a set of SNRs from the “relevant SNR region”. Let us also denote by the probability of such first decoding error occurrence at some location in the non-frozen payload, for some given SNR .
Using the obtained probability distributions and the notations above, it is possible to estimate FAR at each SNR, for every possible value of and . We can obtain the decoding error probabilities:

And therefore, FAR probability can be estimated as

At the next step, the worst-case FAR probability (per values of and) is estimated, as the maximal value over SNRs in the “relevant region”:

This probability serves us for the selection of optimal (minimal) value of , for a given value of :

Optimization Example
Let us consider a (N=128, K=64) polar code with a non-frozen payload of size K’=K+C=83 bits. Figure 5 below illustrates the first decoding error probability distribution for the “relevant SNR region”, obtained based on statistics of 104 frames per SNR point. Figure 6 below illustrates the estimated FAR values depending on , for the proposed value =5, for several SNRs . Finally, Figure 7 below illustrates the estimated worst-case FAR depending on , for several values of .
As we can see from the figures, a value is the minimal possible to satisfy FAR target. In addition, we can see that decreasing to 4 or 3 does not significantly decrease the value of . On the other hand, setting to 6 or 7 will cause quite a significant increase in . This justifies our design choice of .
[bookmark: OLE_LINK11]Observation 2: For Optimized Split-CRC construction (Variant 2), the design choice of provides a good trade-off between high ET probability and low .
[image:]
[bookmark: _Ref488330654]Figure 5. Illustration of for a (N=128, K=64) Polar code with C=19
[image:]
[bookmark: _Ref488330656]Figure 6. Illustration of for a (N=128, K=64) Polar code with C=19

[image:]
[bookmark: _Ref488330658][bookmark: OLE_LINK10]Figure 7. Illustration of for a (N=128, K=64) Polar code with C=19

[bookmark: OLE_LINK83]Performance Simulations
[bookmark: _Ref485557293][bookmark: OLE_LINK20]Simulation Parameters
The simulation parameters for the codes profiled in this contribution are listed in Table 2 below. Four sample codes, representing typical values for DL control channels, were profiled. For the sake of simplicity, no rate-matching was applied, and codeword sizes are powers of two. PW sequence – based code construction was used for all the cases. All codes are compared to reference CA-Polar code construction, with CRC of J+J’=19 bits.
	[bookmark: _Hlk485566392]Channel
	AWGN

	Modulation
	QPSK

	Construction
	PW sequence

	Construction scheme
	(Extended) Split-CRC

	Decoding algorithm
	CA-based Split CRC decoder with ET

	List size
	L=8

	J+J’
	19

	CRC Polynomial
	g(x) = x14+x12+x8+x6+x4+x+1 (0x28A9)

	Split-CRC details
	; bits

	
	[bookmark: OLE_LINK36]Code #1
	Code #2
	Code #3
	Code #4

	K
	64
	48
	80
	128

	Codeword size = N
	128
	256
	512
	512

	 for Variant 1[footnoteRef:11] [11: Distributed-CRC bit locations are taken from Table 1]

	30,46,54,62,65
	27,38,44,48,50
	38,55,66,77,80
	62,89,107,120,125

	 for Variant 2[footnoteRef:12] [12: optimized according to Section 3.2]

	32
	24
	48
	88

[bookmark: _Ref488251551][bookmark: OLE_LINK81]Table 2. Simulation parameters
[bookmark: OLE_LINK21]
[bookmark: _Ref485651141]FAR Performance
Figure 8 below presents the UER performance (FAR in the undetected decoding error scenario) of the four codes, for construction Variant 1. Figure 9 below presents the FAR performance of the four codes, for construction Variant 2, for three possible scenarios of false alarm (UER, random QPSK transmission; valid polar code intended to another user). Results at each SNR point were obtained based on simulated frames.
[bookmark: _Hlk485654722][bookmark: OLE_LINK42]Observation 3: Both Split-CRC construction Variants 1 and 2 satisfy FAR target.

[image:]
[bookmark: _Ref488252057]Figure 8. FAR performance of Split-CRC at Distributed-CRC locations (Variant 1), UER scenario

[image:]
[bookmark: _Ref488252064][bookmark: OLE_LINK39][bookmark: OLE_LINK45]Figure 9. FAR performance of optimized Split-CRC codes to preserve FAR (Variant 2)

Early Termination Probability
[bookmark: _Ref488336467]Early Termination Probability Assessment
ET probability can be roughly assessed as

[bookmark: OLE_LINK27]where is the maximal list size (reference value 8), and stands for the overall number of distributed / embedded assistance bits. The assessment is based on the assumption that the parity / validity check results obtained for all decoding paths in the list are nearly independent[footnoteRef:13]. [13: Note: the decoded information bits themselves are typically highly correlated (among the decoding paths)]

Table 3 below illustrates the ET probability assessment for reference list size , over several values of , and in addition, the “individual” probabilities of termination at the ’th distributed CRC bit:
	 (# of bits)
	1
	2
	3
	4
	5
	6
	7
	8
	9

	
	~0.004
	~0.100
	~0.344
	~0.597
	~0.776
	~0.882
	~0.939
	~0.969
	~0.985

	Probability to terminate at bit #i
	~0.004
	~0.096
	~0.244
	~0.253
	~0.179
	~0.106
	~0.058
	~0.030
	~0.015

[bookmark: _Ref488251605][bookmark: OLE_LINK31]Table 3. Assessments of Early Probability for several numbers of distributed parity bits

Simulation Results for Variant 2
Figure 10 below shows simulation results of Early Termination probability of Split-CRC Variant 2 with embedded CRC block of size = 5 bits. Three scenarios relevant for ET were profiled: correct candidate transmission; valid Polar code scrambled by a different UE-ID; random QPSK data.
Note that for the sake of simplicity, the probabilities simulated corresponded to the probability of stopping upon checking the last CRC bit, and did not take into account the additional possibility for ET (during subsequent decoding process) if all decoding paths are marked as “invalid candidates” (see 2.2).

[image:][image:]
[image:][image:]
[bookmark: _Ref488424213]Figure 10. ET probability of Split-CRC Variant 2 for codes #1-4,

The results show that ET probability for both scenarios of false candidate is SNR-independent, and equals ~77-79%, thus confirming the validity of the assessment in Section 4.3.1 for . In addition, results presented in [3] for = 3 / 4 / 5 and other values of also strengthen this observation.
[bookmark: OLE_LINK110]Observation 4: ET probability simulations confirm the validity of the approximated probability calculation.

Evaluation of ET Latency and Complexity Gains
Overall latency and complexity gains of ET (or “ET gains” in short) are obtained by a weighted combination of ET gains per possible locations of termination (given that termination occurred), multiplied by the probabilities of ET occurrence at these locations:

where and correspond to the latency / complexity gains, given that termination always occurs at the ’th bit in the non-frozen payload.
[bookmark: OLE_LINK98]We are using ET probabilities assessment per CRC bit in Table 3 (validated by simulation in previous subsection), and the ET gains obtained using a real-life polar decoder latency and complexity model we proposed in [5]. For the sake of comparison, we also demonstrate the presumable ET gains obtained using the inaccurate modeling proposed in [10], to show how incorrect modeling leads to over-optimistic and misleading results.

ET Gains Calculation Example
Let us assess the latency gains of Split-CRC construction Variant 1 for code #1.
According to Table 2, the locations of distributed CRC bits for this construction are =30, =46, =54, =62, =65.
[bookmark: _Hlk489985064][bookmark: OLE_LINK63]Figure 11 below illustrates the latency and complexity gains for code #1, depending on the termination point, with the left sub-plot depicting ET gains depending on the location in the non-frozen payload. Note that as some locations correspond to bits located in the middle of base decoding[footnoteRef:14] or rate-1 processing units, termination actually takes place only when these units finish decoding, which explains the non-uniform location of markers in the figure (corresponding to possible termination locations). Therefore, the actual termination locations corresponding to are 30, 52, 55, 67 and 67. According to the figure, the latency gains (blue curve) corresponding to these locations are 0.391, 0.210, 0.118, 0.064 and 0.064, respectively. Summing it up (and using the termination probabilities for each CRC bit assessed in Table 3), the resulting average latency gain equals to: [14: Base decoding unit = an outer-code for which dedicated decoding method is applied for decoding the bits simultaneously]

[bookmark: OLE_LINK57][bookmark: OLE_LINK62][bookmark: OLE_LINK73][bookmark: OLE_LINK74] 0.391 * 0.004 + 0.210 * 0.096 + 0.118 * 0.244 + 0.064 * 0.253 + 0.064 * 0.179 = 0.078
Similarly, the inaccurate simplified calculation approach in [10] (using a fixed processing overhead ratio of 4:1 between non-frozen and frozen bits, illustrated by a green curve in Figure 11) predicts the alleged gains of ~0.59, 0.41, 0.32, 0.23 and 0.20, respectively, for the 5 CRC bit locations. In a similar calculation, the alleged value of ET gain is ~0.214, which is nearly three times larger than the real-life value.

[image:]
[bookmark: _Ref488424362]Figure 11. Latency and Complexity gains for code #1 (N=128, K=64), for NPE=32

[bookmark: OLE_LINK46]

ET Gains Evaluation Results
Table 4 below sums up the assessment of latency and complexity gains, for Distributed-CRC and for Split-CRC constructions (both Variants 1 and 2):
	[bookmark: OLE_LINK64]
	[bookmark: _Hlk488588945]
	[bookmark: OLE_LINK86][bookmark: OLE_LINK88]Code #1
	Code #2
	Code #3
	Code #4

	Latency Gain
	Distributed-CRC
	8.2%
	5.1%
	4.9%
	1.8%

	
	Split-CRC, Variant 1
	7.8%
	4.8%
	4.5%
	1.7%

	
	Split-CRC, Variant 2
	25.4%
	18.6%
	10.7%
	4.9%

	Complexity Gain
	Distributed-CRC
	9.0%
	5.5%
	5.4%
	2.7%

	
	Split-CRC, Variant 1
	8.8%
	5.3%
	5.0%
	2.5%

	
	Split-CRC, Variant 2
	27.9%
	20.8%
	11.6%
	6.7%

[bookmark: _Ref488589785]Table 4. Summary of ET Gains of Distributed-CRC and Split-CRC, based on realistic modeling

[bookmark: OLE_LINK111]Observation 5: Early Termination gains of Distributed-CRC are below 10%, and often below 5%.
Observation 6: Early Termination gains of Split-CRC Variant 1 are comparable to the gains of Distributed-CRC.

Observation 7: Optimized Split-CRC (Variant 2) reaches 2-4 times higher Early Termination gains than Distributed-CRC.
Since Split-CRC Variant 2 is the optimized code construction that does not degrade FAR, we reach the following conclusion:
Observation 8: Achievable ET gains of any parity-based code construction are expected to be below ~30%, and highly dependent on the code.

We want to emphasize that employing inaccurate simplified modeling of decoding latency and complexity leads to overly optimistic predictions of the expected ET gains. Table 5 depicts those wrong assessments, obtained for the same codes and construction schemes (and the same ET probability distribution), using the simplified model of [10]:
	
	Code #1
	Code #2
	Code #3
	Code #4

	Distributed-CRC
	24.4%
	21.1%
	16.9%
	13.0%

	Split-CRC, Variant 1
	21.4%
	18.2%
	15.7%
	12.8%

	Split-CRC, Variant 2
	41.0%
	34.8%
	25.5%
	20.9%

[bookmark: _Ref488589790]Table 5. Summary of ET Gains of Distributed-CRC and Split-CRC, based on inaccurate simplified modeling

[bookmark: OLE_LINK93][bookmark: _Hlk485654798][bookmark: OLE_LINK48]Observation 9: Using a simplified model that does not consider realistic polar decoder architecture yields highly imprecise and misleading results, and might lead to wrong conclusions regarding ET gains.
Proposal 1: Adopt a realistic model for assessment of latency & complexity gains of ET, as proposed in [5].

ET Gains of a Combined CRC and PM – based Approach
[bookmark: OLE_LINK94]So far, the discussion was focused on standalone examination of two possible code construction schemes to enable ET: parity scheme – based, and Path Metric (PM) – based (with or without UE-ID – dependent scrambling). A complementary scheme based on placing UE-ID on frozen bits (proposed and analysed by Tsofun in [6]), provides a detailed discussion of an efficient method for the latter scheme.
Figure 12 to Figure 15 below show the simulation results of ET gains of separate and combined operation of an optimized CRC-based construction (Split-CRC Variant 2) and the construction based on UE-ID scrambling in [6]. The gains are plotted as function of SNR in the relevant operating range, and correspond to the “random QPSK” scenario of false decoding candidate. Note that the reason for ET gains decreasing with rising SNR (for codes #2-4) is using a simple PM-based ET mechanism, employing SNR-independent thresholds. Clearly, optimization of PM thresholds dependent on SNR can further increase the possible ET gains, therefore we believe that the achievable ET gains are always non-decreasing with SNR.

Observation 10: ET gains achievable by placing UE-ID on frozen bits and PM – based ET decoding are typically higher than ET gains achievable by CRC - based construction.
[bookmark: OLE_LINK107]Proposal 2: Adopt UE-ID placement on frozen bits, to improve the achievable ET gains.
Observation 11: A combined CRC + PM – based approach can yield limited additional ET gains, compared to ET gains achievable by PM – based schemes.

[image:]
[bookmark: _Ref488598200]Figure 12. Latency and Complexity gains for code #1 (N=128, K=64), for a joint CRC + PM scheme

[image:]
Figure 13. Latency and Complexity gains for code #2 (N=256, K=48), for a joint CRC + PM scheme

[image:]
Figure 14. Latency and Complexity gains for code #3 (N=512, K=80), for a joint CRC + PM scheme

[image:]
[bookmark: _Ref488598206]Figure 15. Latency and Complexity gains for code #4 (N=512, K=128), for a joint CRC + PM scheme

Summary
Table 6 provides a summary of the advantages and shortcomings of the two variants of Split-CRC code construction, compared to Distributed-CRC.
	

	Distributed-CRC
	Split-CRC

	
	
	Variant 1
	Variant 2 (Optimized)

	[bookmark: _Hlk488600920]BLER performance
	degradations possible for poor choice of CRC polynomial
	[bookmark: OLE_LINK113]same as CA-Polar[footnoteRef:15]
 [15: Simulation results and general intuition were provided in [3]]

	same as CA-Polar13

	FAR performance
	FAR target
not guaranteed[footnoteRef:16] [16: Examples of degradations provided in [7] and [8]]

	same as
Distributed-CRC
	FAR target guaranteed
by code design

	[bookmark: _Hlk488744437]Achievable ET Gains
	below 10%;
often below 5%
	comparable to ET gains of Distributed-CRC
	optimal; typically 2-4 times better than Distributed-CRC

	ET Gains, compared to PM-based schemes
	[bookmark: OLE_LINK106]negligible
	negligible
	limited

	[bookmark: _Hlk488744393]Implementation Complexity
	additional overhead
of interleaving
	[bookmark: OLE_LINK104]no interleaving required
	no interleaving required

	Worst-case
decoding latency
	interleaver might
increase latency
	same as CA-Polar

	same as CA-Polar

	Code planning overhead

	per-code optimization required, by low-cost simulation

[bookmark: _Ref488599628]Table 6. Comparison Summary of Split-CRC and Distributed-CRC construction schemes

[bookmark: OLE_LINK143]Observation 12: Split-CRC construction Variant 1 exhibits similar FAR performance and ET gains to Distributed CRC, with a much simpler design, saving the implementation complexity of information interleaving.
Observation 13: Optimized Split-CRC (Variant 2) construction is superior to Distributed CRC in all major design parameters: optimized ET gains; guaranteed FAR performance; low implementation complexity.
[bookmark: OLE_LINK51][bookmark: _Hlk488744536]Proposal 3: If code construction based on distributed parity bits is used to allow ET, adopt Optimized Split-CRC scheme.

Conclusions
Observation 1: Split-CRC construction can be optimized (per code) to yield the best achievable ET gains, while preserving FAR target, using short-duration BLER simulations.
[bookmark: OLE_LINK112]Observation 2: For Optimized Split-CRC construction (Variant 2), the design choice of provides a good trade-off between high ET probability and low .
Observation 3: Both Split-CRC construction Variants 1 and 2 satisfy FAR target.
Observation 4: ET probability simulations confirm the validity of the approximated probability calculation.
Observation 5: Early Termination gains of Distributed-CRC are below 10%, and often below 5%.
Observation 6: Early Termination gains of Split-CRC Variant 1 are comparable to the gains of Distributed-CRC.
Observation 7: Optimized Split-CRC (Variant 2) reaches 2-4 times higher Early Termination gains than Distributed-CRC.
Observation 8: Achievable ET gains of any parity-based code construction are expected to be below ~30%, and highly dependent on the code.
Observation 9: Using a simplified model that does not consider realistic polar decoder architecture yields highly imprecise and misleading results, and might lead to wrong conclusions regarding ET gains.
Observation 10: ET gains achievable by placing UE-ID on frozen bits and PM – based ET decoding are typically higher than ET gains achievable by CRC - based construction.
Observation 11: A combined CRC + PM – based approach can yield limited additional ET gains, compared to ET gains achievable by PM – based schemes.
Observation 12: Split-CRC construction Variant 1 exhibits similar FAR performance and ET gains to Distributed CRC, with a much simpler design, saving the implementation complexity of information interleaving.
Observation 13: Optimized Split-CRC (Variant 2) construction is superior to Distributed CRC in all major design parameters: optimized ET gains; guaranteed FAR performance; low implementation complexity.

Proposal 1: Adopt a realistic model for assessment of latency & complexity gains of ET, as proposed in [5].
Proposal 2: Adopt UE-ID placement on frozen bits, to improve the achievable ET gains.
Proposal 3: If code construction based on distributed parity bits is used to allow ET, adopt Optimized Split-CRC scheme.

References
[1] [bookmark: _Ref481825115]Chairman’s notes RAN1#89
[2] [bookmark: _Ref487997433]Chairman’s notes RAN1-NR-AH#2
[3] [bookmark: _Ref487997918]R1-1711644, Study of Split-CRC Polar Code Construction for Early Termination, Tsofun Algorithm, RAN1-NR-AH#2
[4] [bookmark: _Ref487997474]R1-1711539, Distributed CRC Polar code construction, - Nokia, RAN1-NR-AH#2
[5] [bookmark: _Ref487998415][bookmark: OLE_LINK136]R1-1712258, Latency and Complexity Modeling of Polar Decoder, Tsofun Algorithm, RAN1#90
[6] [bookmark: _Ref487997487]R1-1712256, Enhancement of Early Termination of Polar Codes by placing UE-ID on Frozen Bits, Tsofun Algorithm, RAN1#90
[7] [bookmark: _Ref488231015]R1-1711215, Evaluation of early termination for Polar codes, Qualcomm, RAN1-NR-AH#2
[8] [bookmark: _Ref488231017]R1-1711980, Performance with L1 CRC polynomial, Qualcomm, RAN1-NR-AH#2
[9] [bookmark: _Ref488276156]R1-1706965, Polar code design, Huawei, RAN1#89
[10] [bookmark: _Ref488422923][89-26] offline email discussion

2/19

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

