3GPP TSG RAN WG1 Meeting #89                                     R1-1709188
Hangzhou, P.R. China 15th – 19th May 2017

Agenda item:

7.1.4.2.1.1
Source:
Nokia, Alcatel-Lucent Shanghai Bell 

Title:
Early Termination Benefits of CRC Distribution

Document for:

Discussion and Decision

1 
Introduction
In RAN1#88bis meeting, CRC distribution [1] on polar codes were discussed and compared with other proposed techniques to support the early termination. Then, the following agreement was made during Ran1 #88bis meeting to progress with the early termination studies [2], 
Conclusion:

· Study until RAN1#89 polar code construction techniques to facilitate early termination (i.e. before decoding all the information bits) without degrading BLER performance or latency (especially considering the time for deinterleaving the information and assistance bits) compared to purely implementation based methods such as path-metric based pruning
· e.g. assistance bits distributed in the codeword in such a way that error detection can be performed after partial decoding
· Investigate performance, complexity and FAR impacts
· Study of use of data-independent scrambling to facilitate early termination is also not precluded
In [3], we provide details of distributed CRC polar codes, and [4] provides performance evaluation of distributed CRC versus CA-Polar for the full set of simulation parameters. In this contribution, we discuss the benefits of CRC distribution and compare with some other techniques proposed to support early termination. 
2 
Discussion
The following agreement was made in Ran1 #88bis considering the different code constructions. 

Agreement:

· J CRC bits are provided (which may be used for error detection and may also be used to assist decoding and potentially for early termination)
· J may be different in DL and UL
· J may depend on the payload size in the UL (0 not precluded)
· In addition, J’ assistance bits are provided in reliable locations (which may be used to assist decoding and potentially for early termination)
· J + J’ <= the number of bits required to satisfy the FAR target (nFAR) + 6

· Working assumption: 

· For DL, nFAR = 16 (at least for eMBB-related DCI)

· For UL, nFAR = 8 or 16 (at least for eMBB-related UCI; note that this applies for UL cases with CRC)

· J’>0

· Working assumption: J”<=2 additional assistance bits are provided in unreliable locations (which may be used to assist decoding and potentially for early termination)
· Can be revisited in RAN1#89 if significant benefit is shown from a larger value of J” without undue complexity – companies are encouraged to additionally evaluate J”=8
· The J’ (and J” if any) bits may be CRC and/or PC and/or hash bits (downscope if possible)
· Placement of the J, J’ (and J” if any) assistance bits is FFS after the study of early termination techniques

· Appended?

· Distributed?

· evenly?

· unevenly? 

The agreed J and J’ bits need to support two functionalities, error detection and optionally error correction. Due to the successive decoding characteristic, the CRC bits when used for error detection and distributed inside the information bits may enable the early termination, as discussed in [1]. This is very useful to save the power and extend the battery life, especially for the downlink blind decoding. The distributed CRC bits may also be used for error correction which can improve the decoding performance as discussed in [4]. 
The different proposals identified for early termination are summarized as follows, 

·  CRC distribution [1]
·  Parity check Polar [5]  

·  Hash Polar [8]
·  Path-metric based pruning
·  Data-independent scrambling in Frozen locations [9]
With most of these solutions, there are two possible algorithms to implement early termination: 
· single-bit early termination 
· multi-bit early termination. 
For single-bit early termination with CRC, the decoding paths are checked by a single distributed CRC bit. When all the paths fail to pass the check, the decoding terminates. For multi-bit early termination, all the available distributed CRC bits, i.e. previously decoded, are used to do the check. The decoding continues when at least there is one path survived in the CRC check. As the good paths may be pruned in later decoding, so the previous used CRC bits may still be useful for later early termination. 
‘

The tree pruning may be performed together with the early termination. If all paths fail the CRC, it is no problem to perform the early termination. However, there can be different methods to follow when some paths are failing the CRC check. 

· Continue with the decoding of CRC passed paths (number of paths in the next step will be lower than max list size)

· Continue with the decoding for all paths with a CRC flag (paths in the next step will be similar to max list size)

· Continue with the decoding for all paths with a penalty value for the failed paths (paths in the next step will be similar to max list size).

· The decoder may use some CRC bits for tree pruning and some others for early termination. 
All these options are implementation choices and we see that there could be many other methods to utilize such CRC distributions.  

2.1 
Distributed CRC versus PC-Polar [5] 
As discussed in the last meeting that performance, complexity and FAR needs to be evaluated for the detailed implementation. For control channel, FAR is the key metric which should be satisfied. FAR depends on the list size and error detection capability of CRC and parity bits. There is enough justification in literature to verify that CRC provides very good performance compared to other error detection codes [6-7]. CRC is a kind of linear block code, showing very nice error detection capability. 
The FAR of the parity bits based solution can be analyzed as follows. The parity bits used for early termination and the final CRC check can be considered to be a combined code because all of them are used for error detection. For example, in [5] a simplified early termination scheme is proposed where some parity bits are generated to support early termination and these bits are generated by the checksum of the transmitted information bits. Then, the corresponding bigger generator matrix can be obtained. 
An example generator matrix for 3 parity bits and 5 CRC bits generated from 12 information bits are shown below. 
	  Parity bits for ET   CRC bits

	

	  1  1  1    0  0  0  0  1

  1  1  1    1  1  0  0  1

  1  1  1    1  0  1  0  1

  1  1  1    1  0  0  1  1

  0  1  1    1  0  0  0  0

  0  1  1    0  1  0  0  0

  0  1  1    0  0  1  0  0

  0  1  1    0  0  0  1  0

  0  0  1    0  0  0  0  1

  0  0  1    1  1  0  0  1

  0  0  1    1  0  1  0  1

     0  0  1    1  0  0  1  1


However, one can see that the combined code is not well designed. It loses some nice error detection properties of the original CRC code. And hence, the parity bits based scheme cannot satisfy the FAR requirement. 
The total number of undetectable errors is shown in Figure 1. The results are obtained by test every possible error of information block to check if it can be detected by CRC or PC+CRC (i.e., 2K error patterns). It is the absolute error detection capability metric. As can be seen from Figure 1, the parity check based scheme [5] experiences nearly double the undetectable errors compared to distribute CRC. So it needs more CRC/PC bits to achieve the same FAR performance. The CRC polynomial used in the PC-Polar is 0x11021, and 3 additional parity check bits are used for early termination and these three bits are also used for final error detection. The 19bit CRC is used in distributed CRC and the polynomial is 0xAF56F. Some companies showed FAR analysis assuming noise at the decoder, where it does not provide the good comparison of parity bits or CRC bits used in the error detection. Parity bits construction of the Simplified ET scheme is very generic where the later parity bits always depend on the information bits that used to generate earlier parity bits. This makes some error bits go unnoticed compared to the well-constructed CRC polynomials.
[image: image1.emf]20 22 24 26 28 30 32

Block size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of undetectable errors

Simplified ET scheme

Distributed CRC


Figure 1. Number of undetectable errors
The percent of ET is shown in Figure 2, which is the metric to evaluate how many errors can be early detected out of all errors. It can be seen that the distributed CRC scheme can 100% early detect the errors, and only 50% errors can be early detected by the simplified ET scheme, for multi-bit ET.  
[image: image2.emf]1 1.5 2 2.5 3 3.5 4

Es/No

0

20

40

60

80

100

%

Percent of ET over total incorrect decoding 

Simplified scheme, single-bit ET

Distributed CRC, single-bit ET

Simplified scheme, multi-bit ET

Distributed CRC, multi-bit ET


Figure 2. Percent of ET, for Polar code (64,43), where info = 24, CRC = 19. 
Figure 3 shows the overall saved computation by ET. It is defined by the percent of ET multiplied by the saved decoding. The saved decoding is defined as remained number of information bits to be decoded compared to the total number of information bits. It can be seen that the distributed CRC outperforms the PC based simplified ET scheme by approximately 100%.
[image: image3.emf]1 1.5 2 2.5 3 3.5 4

Es/No

0

20

40

60

80

1

%

Overall saved computations by ET

Simplified scheme, single-bit ET

Distributed CRC, single-bit ET

Simplified scheme, multi-bit ET

Distributed CRC, multi-bit ET


Figure 3. Overall save computation, for Polar code (64,43), where info = 24, CRC = 19
2.2 
Benefits of Distributed CRC 

The main benefit of the distributed CRC when it is used for early termination is it does not affect the FAR performance, and may even reduce the FAR by additional mechanism [6]. The reason is the CRC code structure is retained and hence it is still optimal for error detection. Hence, this scheme is simpler in terms of product development and test because the performance is guaranteed and verified. 
Another key point to be stressed is the flexibility. We think the design should provide sufficient flexibility for different scenarios. CRC distribution provides the capability of having different decoding choices:
· PC-Polar like behavior when CRC is used for pruning 

· CA-Polar like behavior when CRC used after decoding the full info block 

· The flexibility of choosing the number of bits used for pruning. 

In some cases, FAR may not be critical and improving BLER is possible by using some of the CRC bits for tree pruning (including early termination). Moreover, in some cases, FAR may be important, and all the CRC bits are used for error detection (including early termination), and then having the same BLER as CA-Polar is possible. For example, 16 CRC bits is used in LTE PDCCH considering the worse-case scenario of 44 blind decodes at the UE. But, when the UE has lower number of blind decodes, having error detection equivalent to 16 CRC bits is not needed and can be used for error correction. So the proposed distributed CRC scheme has the benefits of both robustness and flexibility. As for the path-metric based scheme, it lacks robustness and may even affect the BLER performance especially in the varying channel condition.
As for the complexity issue, the DCI block sizes may vary in the range of 20 – 100, so the deinterleaving does not add significant latency. Furthermore, a single interleaving/deinterleaving pattern can be defined to implement CRC distribution for any block sizes. This is much simpler than the Gaussian elimination based matrix transposing method. The method can be realized by shifting registers to go through the pattern and what’s important is the memory access is sequential and this makes the processing simpler and faster. More details are discussed in [3]. In conclusion, with limited complexity of interleaving/deinterleaving, the overall decoding time will be reduced significantly by early terminating unnecessary blind decodes.

The main benefits of distributed CRC can be summarized as: 
· Flexible, the CRC bits can be used as error correction or error detection by conventional CRC detector.

· Performance gain is observed when used as error correction compared to CRC-aided decoding.

· Support of early termination, to save power and reduce decoding delay.

· Possible to reduce the FAR by careful permutation. 

· Any other codes, e.g. parity bits, are not required to provide error correction. 

Observation 1: The distributed CRC scheme shows better performance of FAR and early termination with strong flexibility.
Proposal 1: Support early termination by distributed CRC.
2.3 
Latency and complexity gain
The early termination performance is studied in quite a few papers [9-17]. However, the studies show very different performance. In some papers, significant latency and/or complexity gain is observed [1, 10-13] but in some other papers [16, 17], the gain is very limited and even negligible. Hence, it is needed to discuss what’s the reason causing so distinct results and how to properly evaluate the early termination gain.
In [17], the performance is evaluated in multiple scenarios. However, the details how the results are obtained are not provided. It is stated that the performance is evaluated by simulation time. However, simulation is very different from the real receiver and it involves many unrelated modules, making it impossible to get the accurate results. Hence, the evaluation in [17] is not convincing. 
An early termination metric is studied in [16], where the decoder uses the same time to process an information bit and a frozen bit. This is quite different from its previous version [19], where the information bit takes 3 times clocks compared to a frozen bit, and paper [15] is based on this older metric. In addition, the new metric in [16] is also very different from an even early paper which gave the analysis of the latency of TBCC and Polar code [18]. And the consequence is the new metric immediately causes the latency and complexity gain decreased significantly, especially for the low code rate scenarios. Since there are different metrics and some of them are quite confusing, so there is a need to discuss the proper metric. Let’s start with the same example in [16].
In the following example, the mother code length M is 8, so for SC decoder, the total number clocks to decode the 8 bits are 2M-2 = 14 clocks. The same result can also be found in [16].
 
[image: image4.emf]f

g

f

g

f

g

f

g

f

f

g

g

f

f

g

g

f

f

f

f

g

g

g

g

u

0

u

1

u

2

u

3

u

4

u

5

u

6

u

7

y

0

y

1

y

2

y

3

y

4

y

5

y

6

y

7


Figure 4. Polar code with mother code length = 8; y0, y1... y7 are the received bits before decoding and u0, u1… u7 are the decoded bits. There are f and g nodes in the code graph, representing the two types of LLR calculation.
The above code can also be depicted by tree structure, as shown in Figure 5. The main problem of SC decoder is the high latency. Low latency decoding algorithms are studied in many literatures [18] [20]. Among them, one very simple method is by pruning the frozen branches, i.e. not going deeply recursion for a branch if all its leaf nodes are frozen bits. In fact, this was observed years ago when Polar code was just invented [20], and also discussed in [18]. This simple improvement can reduce the clock cycles effectively. Additional improvements [20] are also possible to further reduce the clock cycles and consequently hence to reduce the impact of frozen bits, but in the following analysis only this frozen branch pruning method is considered, because this is the simplest and would be supported by every implementation. For the example shown in Figure 4 and Figure 5, half of the clock cycles could be saved. Let’s consider another example, where the code rate is 1/6 and the block size N=192 and M=256, and PW is used for sequence generation. There are 224 frozen bits, giving many frozen branches to prune in decoding. For this example, the classic SC decoder needs 2M-2 = 510 clock cycles and this improved method only needs 87 cycles. Hence, it is reasonable to assume such kind of decoder will be used in practical implementation. Unfortunately, the slow SC decoder is still assumed in [16].

[image: image5.emf]
Figure 5. Polar code represented by tree structure. The black nodes have only information leaf nodes; grey nodes have both frozen and information leaf nodes; white nodes have only frozen leaf nodes. The number and distribution of black white and grey nodes in this figure is just for example.
The latency metric for the list decoder is defined below, where C(r)(N) is the total number of clock cycles needed to decode the block of block size N and code rate r without early termination. C(r)(P) is the clock cycles before early termination where P bits are already decoded . S(L) is the clock cycles to sort L paths. And Kp is the number of information bits decoded before early termination. 

[image: image6.wmf])

(

*

)

(

)

(

*

)

(

)

(

*

)

(

)

(

)

(

)

(

L

S

K

N

C

L

S

Kp

P

C

L

S

K

N

C

gain

latency

r

r

r

+

-

-

+

=


 (1)
C(r)(N) can be obtained by the code structure and the number of information bits to be transmitted with the specific sequence. It is noted that C(r)(N) function is not linear because of the decoding optimization as discussed above. In [18], S(L) is modeled by:


[image: image7.wmf]ú

ú

ù

ê

ê

é

+

=

4

*

2

)

2

(

log

)

1

)

2

(

(log

)

(

2

2

L

L

L

S

 
(2)
According to (2), for L=8, sorting needs 3 cycles, so the clock cycles to process one information bit is 4x of a frozen bit. It can be seen from (1) that the frozen bits, and hence the code rate, have minor impact on the early termination gain.
As studied in section 2.2, the early termination may save approximately 2/3 decoding. So let’s take 65% in following estimation as the raw gain without considering the frozen bits, so the raw gain should be applicable for different code rates because the frozen bits are not considered to obtain the raw gain. With this raw gain, the number of decoded bits before early termination can be estimated and therefore the adjusted latency gain can be obtained by (1). The similar scenarios as discussed in [17] are used for evaluation where the transmitted code block sizes are 192 and 384, with mother code block sizes of 256 and 512. Five different code rates [1/6, 1/4, 1/3, 1/2, 2/3] are studied. For even lower code rate, e.g. 1/12, repetition would be used. The repetition is done after Polar encoding and hence at the receiver side, the processing is done before the Polar decoding, so it does not affect the early termination. The results are shown in Figure 6. It can be seen that the latency gain is slightly reduced for 1/6 code rate by only 10%. Therefore, the metrics used in [1, 10, 11, 14] are already good enough to understand the latency benefits of early termination, where only the information bits are considered.
  [image: image8.emf]1/6 1/4 1/3 1/2 2/3 1

0

10

20

30

40

50

60

70

80

Code rate

Gain (%)

Adjusted latency gain

 

 

N=192, M=256

N=384, M=512


Figure 6. Adjusted latency gain

Observation 2: The Latency gain by early termination is significant even for low code rate.
The complexity gain is also an important aspect because the power consumption is critical. To discuss the complexity gain, more details need to be considered. For example, LLR calculation involves multiplying, adding and sign obtaining. And it also involves sorting and pruning. Different algorithms may have different complexity. In addition, the number of recursions for different bits is also different. Based on the above analysis and the study in [18], these required parameters can be obtained. Then the complexity saving metric is defined as:

[image: image9.wmf]å

å

å

=

=

=

+

+

-

+

=

M

i

r

N

r

N

r

N

P

i

r

N

r

N

r

N

M

i

r

N

r

N

r

N

i

L

S

i

a

i

L

i

C

i

L

S

i

a

i

L

i

C

i

L

S

i

a

i

L

i

C

gain

complexity

1

)

,

(

)

,

(

)

,

(

1

)

,

(

)

,

(

)

,

(

1

)

,

(

)

,

(

)

,

(

)]

)

(

(

*

)

(

)

(

)

(

[

)]

)

(

(

*

)

(

)

(

)

(

[

)]

)

(

(

*

)

(

)

(

)

(

[


(3)

[image: image10.wmf]î

í

ì

=

   

ation bits

for inform

 bits

for frozen

i

a

1

0

)

(


(4)

where C(N,r)(i) is the number of operations including adder and comparator to decode the ith bit of block size N and code rate r; According to [18], f node needs 3 operations, and g node needs 2 operations. S (L(N,r)(i)) is the operations of sorting L(N,r)(i) lists; L(N,r)(i) is the number of active lists at ith bit; P is the number of bits decoded before early termination. The number of operations of sorting is given in [18]:


[image: image11.wmf]2

)

2

(

log

)

1

)

2

(

(log

*

)

(

2

2

L

L

L

L

S

+

=

 
(5)
It can be seen from figure 7 that the accumulated operations and active lists are not linear. The complexity resides more at the later part where the information bits are transmitted. This is also observed in [9]. This means the frozen bits have less impact on the complexity gain. Hence, the overall complexity gain would be more approaching the metric defined in [1] where only the information bits are considered.
[image: image12.emf]0 50 100 150 200 250 300

0

500

1000

1500

Bit index

Accumulated operations for M=256

 

 

code rate = 1/6

code rate = 1/4

code rate = 1/3

code rate = 1/2

code rate = 2/3

 [image: image13.emf]0 50 100 150 200 250 300

0

200

400

600

800

1000

1200

1400

1600

1800

Accumulated active lists for M=256

Bit index

 

 

code rate = 1/6

code rate = 1/4

code rate = 1/3

code rate = 1/2

code rate = 2/3


Figure 7. The number of accumulated operations and active lists for mother code block size 256.
Similarly, if we take the 65% raw gain for estimation and assume L=8, the achievable complexity gain by early termination can be obtained by (3). The results are shown in figure 8. Then it can be seen that the complexity gain is very close to the raw gain because the influence of the frozen bits is further suppressed.
[image: image14.emf]0 1/6 1/4 1/3 1/2 2/3 1

0

20

40

60

80

Code rate

Complexity gain (%)

Adjusted complexity gain

 

 

N=192, M=256

N=384, M=512


Figure 8. Adjusted complexity gain

Observation 3: The Complexity gain by early termination is significant even for low code rate.

As for the list size, increased number of list size may have adversely impact on the early termination gain. However, it is questionable whether L=32 will be used in practical implementation. It is discussed in [18], “the latency of the polar decoder with list size = 32 will be at least four times that of the L = 8 decoder”. And the FAR will increase for larger list sizes. In addition, as discussed in [4], when the CRC bits are used for pruning, 0.5dB gain can be achieved and this makes it less desirable to use larger list sizes. Hence, L=8 is a suitable assumption to evaluate the latency and complexity gain. Even if larger list size has to be used, the need of complexity and latency saving would be much more critical compared to L=8 even though the achievable gain is relatively smaller.
3
Conclusion
In this contribution, the early termination design details are analyzed and candidate implementation schemes are discussed. It is observed that the distributed CRC scheme show multiple benefits and potentials. The observations are proposals are summarized below:
Observation 1: The distributed CRC scheme shows better performance of FAR and early termination with strong flexibility.
Observation 2: The Latency gain by early termination is significant even for low code rate.

Observation 3: The Complexity gain by early termination is significant even for low code rate.

Proposal 1: Support early termination by distributed CRC.
References

[1] R1-1705861, “Design details of distributed CRC”, Nokia, Alcatel-Lucent Shanghai Bell

[2] R1-1706408, “WF on polar code design”,
Nokia, ASB, Docomo, LG

[3] R1-1708833, “Design details of distributed CRC”, Nokia, Alcatel-Lucent Shanghai Bell

[4] R1-1708831 ,
“Performance evaluation of polar code constructions”, Nokia, Alcatel-Lucent Shanghai Bell

[5] R1-1705757, “Distributed simple parity check Polar codes”, DOCOMO

[6] Yang-Ho Choi, “Burst synchronization and error detection with a single CRC decoder”, IEEE Electronics Letters, Volume: 33, Issue: 1, 2 Jan 1997

[7] P. Koopman; T. Chakravarty, “Cyclic redundancy code (CRC) polynomial selection for embedded networks”, International Conference on Dependable Systems and Networks, 2004, Pages: 145 – 154

[8] R1-1704593,
“Polar codes construction for eMBB control channel”
CATT

[9] R1-1701897, “Early block discrimination with polar codes to further accelerate DCI blind detection”, Coherent Logix Inc.
[10]  R1-1706965, “Polar code design
Huawei”, HiSilicon

[11]  R1-1707181, “Performance evaluations on Polar codes with distributed CRC bits”, ZTE

[12]  R1-1707524, “Design of polar codes for early termination
”, CATT
[13]  R1-1708488, “Distributed simple parity check Polar codes”,
NTT DOCOMO, INC.

[14]  R1-1708047, “Early termination of polar decoding
”, Samsung

[15]  R1-1708316, “Study of early-termination techniques for Polar code”, Intel Corporation

[16]  R1-1708644, “Early termination for polar codes”, Qualcomm Incorporated

[17]  R1-1707072, “Early Termination of Polar Codes in Downlink”, Ericsson

[18]  R1-1612089, “Control Channel Complexity Considerations”, Qualcomm Incorporated

[19]  R1-1705631, “Evaluation of CA with distributed CRC bits”, Qualcomm Incorporated, RAN1#88b, Spokane, USA

[20]  A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive cancellation decoder for polar codes,” IEEE Commun. Lett., vol. 15, no. 12, pp. 1378–1380, Dec. 2011.
_1556087455.vsd
f


g


f


g


f


g


f


g


f


f


g


g


f


f


g


g


f


f


f


f


g


g


g


g


u0


u1


u2


u3


u4


u5


u6


u7


y0


y1


y2


y3


y4


y5


y6


y7



_1556128633.unknown

_1556165530.unknown

_1556351996.unknown

_1556165287.unknown

_1556127047.unknown

_1556022006.vsd

