3GPP TSG RAN WG1 Meeting #89	R1-1709134
Hangzhou, CN, May 15 - 19, 2017

Agenda Item:	7.1.4.2.1.1
Source:	Coherent Logix Inc.
Title:	Implementation Considerations for Polar Code Construction
Document for:	Discussion

Introduction
In recent meetings, methods have been proposed for Polar Code construction: Polarization Weight (PW) [1] and FRANK polar construction [2]. In this contribution, we examine the implementation considerations associated with each method. Our focus is on efficient computation of the ordered sequence and assignment of bit positions as implemented in a finite precision MiNP architecture such as that described in [3]. Although a MiNP architecture was use for evaluation, the findings regarding finite precision are generally applicable. Considerations regarding code performance, with and without rate matching, are not the focus of this contribution and will be left to separate discussions.
Methods of Code Construction
Polarization Weight (PW)
PW polar code construction is described as a method based in Binary Expansion (BE) aimed at addressing the reliability order issue. The procedure for deriving the ordered sequence and info/frozen bit positions is summarized as follows:
The SNR-independent reliability estimation is done by computing the reliability of each sub-channel (offline operation), and storing the ordered index sequence for the polar code of maximum code length Nmax. The reliability order of sub-channels is estimated through a weight sequence , calculated as follows:

Assume with ,,
then,
 	
where n = log2(N).
FRActally eNhanced Kernel (FRANK)
FRANK polar code construction is described as providing a theoretically justifiable framework for scalable polar code sequence construction with low description complexity to enable online construction. The procedure for deriving the ordered sequence and info/frozen bit positions is summarized as follows:
1) Construct a short reference sequence based on Nested MI DE, or other schemes
2) For each (N, K) code, recursively partition a long codeword into groups of small length (the shortest length equals the length of short reference sequence) and allocate # of information bits Ki to each group based on the information-bit ratio according to the MI ratio formula taking into account punctured bits and/or shortened bits.
3) Generate information bit location of the group of length Nref based on short reference sequence and # of info bits in that group when the block of length Nref or shorter is reached.

Design Analysis
PW
Computational Load
The PW method of code construction involves two sets of computations: (i) accumulating the weighted sum of each U-domain index; (ii) rank ordering the weighted sums to determine the X-domain mapping.
Weighted Sum
[bookmark: _GoBack]Let us assume that the progression in j is computed offline: . The remaining weighted sum computation amounts to a series of summations of the form where non-zero coefficients, Bi,j, determine which powers in j to combine for each weighted sum, . This calculation can be parallelized along dimensions, i or j, as needed to reduce latency.
Rank Ordering
The weighted sums can be rank ordered with Nlog2N complexity. The complexity reduces to nN given n = log2N. This computation cannot be easily parallelized. However, given modest block sizes, we will proceed by considering this computation to be done online as well.
The latency for the ordered sequence computation is at or below 20s given a minimum 1GHz clock and assuming no parallelism. With a minimum 500MHz clock, the latency is 40s or less across the range of candidate block sizes. Taking opportunities to parallelize the weighted sum calculation into account, the latency can be further reduced.
[image:]
[bookmark: _Ref471717605]Figure 1: Latency Analysis - PW Ordered Sequence Generation
Finite Precision Effects
Dynamic range for the weighted sum computation is bounded by zero for i = 0 = [000…0]2 and for i = N-1=[111…1]2. Given , Wmax = 19.8556. The relative mean-squared error is shown in Figure 2 for a range of bit representations assuming 5- bits integer with the remaining bits used to represent the fractional portion. The quantization noise power is better than 75dB down for modest bit widths. The MiNP architecture being used for evaluation is based on 16-bit data though the findings are generally applicable to any finite precision implementation.
[image:]
[bookmark: _Ref481763114]Figure 2: Quantization Error Analysis - PW Ordered Sequence Generation
FRANK
FRANK code construction incorporates three key design elements:
1) Construct a short reference sequence based on Nested MI DE, or other schemes including PW.
2) For each (N, K) code, recursively partition a long codeword into groups of small length (the shortest length equals the length of short reference sequence) and allocate # of information bits Ki to each group based on the information-bit ratio according to the MI ratio formula taking into account punctured bits and/or shortened bits.
3) Generate information bit location of the group of length Nref based on short reference sequence and # of info bits in that group when the block of length Nref or shorter is reached.
MI Recursion
In the case of N=2m, the info bit distribution is based on MI calculation where the input MI to the recursion is set to capacity MI = R = K/N (that is the maximum rate a channel code can support). Recursive calculation of the rate allocation for each group, e.g. R0, R1, and subsequently, R00, R01, R10, R11, etc. is carried out as depicted in Figure 3.
[image:]
[bookmark: _Ref481861254]Figure 3: FRANK IM Recursion
Computational Load
The computational load is dominated by R2 and 2R-R2 computation pairs. M segments of Nref each requires m=log2M stages incurring 21+22+23+… computation pairs. Each pair requires one multiply and one multiply-accumulate for a total of two operations per pair, per stage. The total number of operations is thus given by . N = 1024 and Nref = 64, M = 16 requires m = 4 stages. The total operation count is 26200. The corresponding latency is negligible for any clock speed. See Figure 4.
[image:]
[bookmark: _Ref481862995]Figure 4: Latency Analysis – FRANK IM Recursion
Finite Precision Effects
The precision requirements are determined by R-RM terms which, for low code rates and long block sizes, push the bit width requirements. However, taking the course granularity associated with distributing K information bits to M sub-blocks, the precision requirements can be relaxed. A heuristic approach suggests that 13 or 14 bits should suffice for accurate computation.
Bit Distribution
The choice of information bit distribution among respective groups of length Nref is established in [2] as being instrumental in devising a code that is capacity achieving. Table 1 lists the K-distribution for FRANK alongside that for PW. Note that the PW K-distribution can be tuned to approximate the sparsity of information bits in the upper part of the FRANK code sequences[footnoteRef:1]. This consideration has been taken into account to promote equitable side-by-side comparison. The baseline PW case, m4 = 4, is highlighted in bold. [1: This is a preliminary mapping meant for illustration and does not constitute a final design recommendation.]

[bookmark: _Ref481745543]Table 1: K distribution of N = 512 PDCCH codes
	
	FRANK
	PW:

	
	K=32
	K=48
	K=64
	K=80
	K=96
	m1
	m2
	m3
	m4
	m5

	K00[0, 63]
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	K01[64, 127]
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	K02[128, 191]
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	K03[192, 255]
	1
	2
	4
	6
	9
	1
	2
	5
	7
	8

	K10[256, 319]
	0
	0
	0
	0
	1
	0
	0
	0
	1
	1

	K11[320, 383]
	2
	4
	7
	10
	14
	8
	10
	11
	11
	10

	K2[384, 447]
	3
	7
	11
	16
	20
	19
	17
	16
	15
	14

	K3[448, 511]
	26
	35
	42
	48
	52
	36
	35
	32
	30
	29

Conclusions
This contribution analyzes PW code construction alongside FRANK code construction. The aim was to examine the two methods to identify any substantive differences from an implementation standpoint. Our findings indicate that two approaches are comparable with some implementation considerations to take into account as summarized in the following:
Observation-1: Though higher than that of FRANK, PW latency is small (<40s) which is comparable to anticipated slot times for NR. Consequently, the latency for code construction can be hidden in the preceding slot time.
Observation-2: Finite precision effects with PW construction are negligible (>75dB below the signal of interest) suggesting online computation is feasible even for modest bit-widths.
Observation-3: Finite precision requirements with FRANK must be examined more closely to ensure that encoder and decoder arrive at the same K-distribution of bits. This is especially true for long block sizes and low code rates where RM terms begin to dominate.
Observation-4: Given the potential for online computation, the K-distribution for PW can be tuned to approximate that for FRANK providing a similar starting point for rate matching considerations.
References
[1] [bookmark: _Ref465145735][bookmark: _Ref481718010][bookmark: _Ref466028992]R1-1701702, “Construction schemes for polar codes”, Huawei, HiSilicon, TSG RAN WG1 #88, Feb. 2017.
[2] [bookmark: _Ref481718020]R1-1706130, “FRANK polar construction: nested extension design of polar codes based on mutual information”, Qualcomm Inc., TSG RAN WG1 #88bis, Apr. 2017.
[3] [bookmark: _Ref482000433]R1-1613018, “Polar Decoder Implementation on Memory-In-Network DSP”, Coherent Logix Inc., 3GPP TSG RAN WG1 Meeting #87, Nov. 2016.
2/6

image2.emf
8 9 10 11 12 13 14 15 16

-80

-60

-40

-20

0

20

40

60

Quantization Error - PW Weights

Total bits

Power(dB)

Signal: |W|

2

Error: |W-Wq|

2

image3.emf
R =

K/N

R0 R1

R10 R11 R00 R01

R010 R011 R000 R001 R110 R111 R100 R101

R

2

2R-R

2

2R1-R1

2

R1

2

2R0-R0

2

R0

2

R00

2

2R00-R00

2

K

[0:7]

= K

×

R

[0:7]

/

S

R

[0:7]

R01

2

2R01-R01

2

R10

2

2R10-R10

2

R11

2

2R11-R11

2

image4.emf
0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000

Latency (



s)

Clock (MHz)

FRANK IM Recursion Latency

N = 64

N = 128

N = 256

N = 512

N = 1024

image1.emf
0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000

Latency (



s)

Clock (MHz)

PW Ordered Sequence Latency

N = 64

N = 128

N = 256

N = 512

N = 1024

