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1 
Introduction
In RAN1#88bis meeting, CRC distribution on polar codes was discussed and compared with other techniques proposed to support the early termination of polar coding. The following agreement was made during Ran1 #88bis meeting to progress with the early termination studies, 
Conclusion:

· Study until RAN1#89 polar code construction techniques to facilitate early termination (i.e. before decoding all the information bits) without degrading BLER performance or latency (especially considering the time for deinterleaving the information and assistance bits) compared to purely implementation based methods such as path-metric based pruning
· e.g. assistance bits distributed in the codeword in such a way that error detection can be performed after partial decoding
· Investigate performance, complexity and FAR impacts
· Study of use of data-independent scrambling to facilitate early termination is also not precluded
In this paper, we provide details of design consideration of distributed CRC polar codes. The performance comparison of distributed CRC and CA-Polar is provided in [1]. 

2 
Discussion
The following agreement was made in Ran1 #88bis considering the different code constructions. 

Agreement:

· J CRC bits are provided (which may be used for error detection and may also be used to assist decoding and potentially for early termination)
· J may be different in DL and UL
· J may depend on the payload size in the UL (0 not precluded)
· In addition, J’ assistance bits are provided in reliable locations (which may be used to assist decoding and potentially for early termination)
· J + J’ <= the number of bits required to satisfy the FAR target (nFAR) + 6

· Working assumption: 

· For DL, nFAR = 16 (at least for eMBB-related DCI)

· For UL, nFAR = 8 or 16 (at least for eMBB-related UCI; note that this applies for UL cases with CRC)

· J’>0

· Working assumption: J”<=2 additional assistance bits are provided in unreliable locations (which may be used to assist decoding and potentially for early termination)
· Can be revisited in RAN1#89 if significant benefit is shown from a larger value of J” without undue complexity – companies are encouraged to additionally evaluate J”=8
· The J’ (and J” if any) bits may be CRC and/or PC and/or hash bits (downscope if possible)
· Placement of the J, J’ (and J” if any) assistance bits is FFS after the study of early termination techniques

· Appended?

· Distributed?

· evenly?

· unevenly? 

The proposed CRC distributed Polar code is constructed as illustrated in the following Figure 1. The CRC bits can be generated by conventional CRC generator. With a single pattern of interleaving, the CRC bits are distributed in the information bits. Then comes the kernel Polar code encoding. In the Polar decoding step, the tree pruning and early termination can be performed. After a similar deinterleaving step, CRC detection is executed. The deinterleaving may also be handled as part of the decoding in implementation. 

[image: image8.png]
Figure 1. CRC distributed Polar code transmission flow
2.1 
CRC generator matrix properties
As discussed in [1,2], CRC distribution is beneficial for early termination and performance improvement when used for tree pruning. The principle and Gaussian elimination based scheme was discussed in [3]. In implementation, a single pattern of interleaver/deinterleaver for all block sizes is desirable to reduce the complexity. This is possible with the property of the CRC generator matrix.

There is one interesting property of CRC generator matrix. Suppose the generator matrix for information block size K is GK = {gK, gK-1, … , g1}, where g1, … , gK are the row vectors of GK. For information block size K+1, the CRC generator matrix GK+1 has the property that GK+1 = {gK+1, gK, gK-1, … , g1} = {gK+1, GK}, i.e., the CRC generator matrix of block size K is part of CRC generator matrix for K+1. The difference is one new row is added on the top. This unidirectional growth property makes it possible to design a single pattern for all block sizes.

For example, it is shown below the 4bit CRC generator matrix for 8 information bits. It contains the CRC generator matrix for 4, 5, 6 and 7 information bits. 
This means that if the CRC generator matrix for the largest possible information block Kmax, which could be very large, is stored, the CRC generator matrix for arbitrary information block sizes smaller than it can be easily obtained. So it is not needed to store the CRC generator matrix for each information block size K. 


[image: image2.emf]     1     0     1     0

     0     1     0     1

     1     0     0     0

     0     1     0     0

     0     0     1     0

     0     0     0     1

     1     0     1     0

     0     1     0     1

4

 

i

n

f

o

 

b

i

t

s

5

 

i

n

f

o

 

b

i

t

s

6

 

i

n

f

o

 

b

i

t

s

7

 

i

n

f

o

 

b

i

t

s

8

 

i

n

f

o

 

b

i

t

s


Figure 2. The 4bit CRC generator matrix for 4~8 information bits

The next property is the columns of the CRC generator matrix can be grouped into one or a few sections, depending on the underlying CRC polynomial. The columns belonging to the same section is a shifted version of each other. One section contains the columns corresponding to 1 and the 0s followed by it in the CRC polynomial from left to right.

For example, the CRC polynomial for 16bit CRC is shown below:

[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]

There are three sections corresponding to {1 0 0 0}, {1 0 0 0 0 0 0}, and {1 0 0 0 0}

This could be understood by the structure of the shift register based CRC generator, where one section consists the shift register connecting an XOR operator and the followed shift registers after it not connecting the XOR operator.


[image: image3]
Figure 3. Sections defined by the shift register XOR operator

So, one column can be used to generate other columns in the CRC generator matrix of the same section. If memory saving is prioritized to obtain the generator matrix, this property is useful. The most memory saving implementation is to store only one column as a sequence from which all the other needed columns of arbitrary blocks sizes can be obtained easily. For the above example, if six CRC bits are moved forward, only one section needs to be considered and then one column is enough to generate all the other 5 columns. It is also possible to store all the six columns as memory requirement is still not high. 
Let’s have a look at the next example. Suppose Kmax = 40. The check part of the 16bit CRC generator matrix is:
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Figure 4. 16bit CRC generator matrix for 40 info bits; polynomial is x16+x12+x5+1
The CRC generator matrix for 20 information bits can be obtained by taking out the last 20 rows of the matrix for Kmax. The processing is from bottom to up. And similar CRC generator matrix can be obtained for other block sizes smaller than Kmax. One may also discover that the first column is a shifted version of the second column.
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Figure 5. 16bit CRC generator matrix for 20 info bits; polynomial is x16+x12+x5+1
2.2 
Proposed interleaving/deinterleaving pattern 
A single interleaving pattern can be generated by the following steps:
· Select an appropriate Kmax, which should be no less than the maximum value of all possible numbers of input information bits;

· By following the principles described in the previous section, generate an interleaving pattern for Kmax based on the underlying CRC polynomial;

· Note that only one interleaving pattern is needed. For all K <= Kmax values, the same interleaving pattern can be reused.

Observation 1: For a given CRC polynomial, CRC distribution can be done with simple interleaving pattern designed at the maximum supported information block size. 
Observation 2: For a given CRC polynomial, CRC distribution for all block sizes can be derived based on the mother interleaving pattern. 

A possible way of using this single pattern in practice. 

· When the number of information bits to be transmitted is K, follow these steps to generate the bit sequence for polar encoding:

· Generate the CRC bits for the K information bits;

· Place all information and CRC bits in the buffer; For the remaining Kmax – K bits, place <NULL> bits in the buffer;
· Note that the information bits need to be placed in a reversed order, i.e., the index counting starts from the bottom row of the CRC generator matrix and grows upwards.
· Do interleaving for all the bits in the buffer, including the <NULL> bits based on the interleaving pattern;
· After interleaving, remove the <NULL> bits at the output.
· When decoding is conducted at the receiver side, the usual successive cancellation/list decoding can be applied for the information bits. When the distributed CRC bits are encountered in the decoding process, these CRC bits can be used for tree pruning and/or early termination.
· Note that even for the distributed CRC bits, a usual successive cancellation/list decoding step can be applied, which solely depends on the LLR values and does not take into consideration the knowledge of the underlying CRC polynomial. 

For the purpose of illustration, a toy example is shown below, where Kmax = 12, the number of CRC bits is 4, and a total of K = 10 information bits are to be encoded. P1, P2, P3, and P4 refer to the CRC bits. So before polar encoding starts, we need to generate a sequence of 10 + 4 = 14 bits. The binary representation of the CRC polynomial is [1 1 0 0 1], and the corresponding G matrix has a structure of [I P], where I is an identity matrix. To save space we only show P here:
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Figure 6. P for [1 1 0 0 1]

We choose P3, which corresponds to the third column of P, as the first distributed CRC bit for transmission. So the input bits row-indexed by S3 = {2, 3, 4, 5, 7, 9, 10} in Fig. 6 are firstly transmitted, which corresponds to the non-zero elements in the third column. Again, we emphasize that the indices start from the bottom of P and grow upwards.
The next chosen CRC bit is P1. Similarly, we need to transmit the bits at S1 = {1, 2, 3, 5, 7, 8, 11}. But there is an overlapping between the bit sets of P1 and P3. Since the bits in S3 are already transmitted, for the transmission of the second segment we should remove these bits from S1. Hence the final bits in the second segment are S1 \ S3 = {1, 2, 3, 5, 7, 8, 11} \ {2, 3, 4, 5, 7, 9, 10} = {1, 8, 11}, where \ is the set relative complement operation.
The next chosen CRC bit is P2. With the same argumentation, the set of bits to be transmitted is (S2 \ S1) \ S3 = ( {3, 4, 5, 6, 8, 10, 11} \ {1, 2, 3, 5, 7, 8, 11} ) \ {2, 3, 4, 5, 7, 9, 10} = {4, 6, 10} \ {2, 3, 4, 5, 7, 9, 10} = {6}.
And the final segment corresponding to P4 is ((S4 \ S2) \ S1) \ S3 = ( ( {1, 2, 3, 4, 6, 8, 9, 12} \ {3, 4, 5, 6, 8, 10, 11} ) \ {1, 2, 3, 5, 7, 8, 11} ) \ {2, 3, 4, 5, 7, 9, 10} = ( {1, 2, 9, 12} \ {1, 2, 3, 5, 7, 8, 11} ) \ {2, 3, 4, 5, 7, 9, 10} = {9, 12} \ {2, 3, 4, 5, 7, 9, 10} = {12}

The mother interleaving pattern is the concatenation of all the above segments, which is {2, 3, 4, 5, 7, 9, 10, P3, 1, 8, 11, P1, 6, P2, 12, P4}. 
The receiver can store such pattern for later decoding. It is not required to generate it online.
Thus, a mother interleaving pattern is designed for Kmax = 12, and it could be used for all K values less than or equal to Kmax. In the toy example, K = 10 is considered. Firstly P1, P2, P3, and P4 are generated and together with the 10 information bits, encoded bits are 1, 2, …, 10, P1, P2, P3, and P4. The interleaving pattern for K = 10 is similar to the mother interleaving pattern where bit 11 and 12 are removed (as there are not info bits now) from the pattern. A possible practical way of blanking is explained above. 
The derived interleaving pattern for K = 10 is {2, 3, 4, 5, 7, 9, 10, P3, 1, 8, P1, 6, P2, P4}.
The overall interleaving and blanking (nulling) process can be summarized in the following diagram.


[image: image7]
Figure 7. Deriving interleaving for K =10 from mother interleaving pattern of Kmax = 12 with blanking.    
With this method, only one interleaving pattern is needed for all K values in order to implement the distributed CRC polar coding scheme. Though only a toy example is used to explain the idea, the described procedure is general and can be applied to cover any information block sizes and CRC polynomials.
The deinterleaving is quite similar. When the information bits are decoded successively, they are deinterleaved based the same pattern back to the original information bit sequence. When it encounters the CRC bit, tree pruning or early termination can be performed.

Proposal 1: CRC distribution for polar coding should be supported based on a single interleaver pattern designed for the maximum info block size (Kmax). All other distribution patterns can be derived by blanking the info bit indices which are above the block size (K).  

2.3 
Decoding methods
In this single pattern CRC distribution scheme, only one pattern needs to be defined for different block sizes, and the same pattern can be used for both interleaving and deinterleaving as discussed above. In this scheme, the deinterleaving can be performed during the decoding. When all the information bits are decoded, the deinterleaving is also finished. This is very useful for tree pruning and early termination where the CRC check may be performed in the middle of decoding just by the conventional CRC detector, because the CRC check can be performed based on the deinterleaved bit sequence even though only partially decoded. The secret is the undecoded bits are irrespective to the CRC bit to be checked. Of course, the CRC detecting is quite flexible. It could also be implemented by the binary sum of the information bits corresponding to the 1 bit values of the column corresponding to the specific CRC bit, as the column now can be easily obtained from the stored sequence for Kmax.
3
Conclusion
In this contribution, we discuss properties of CRC generator matrices and provide details on generating CRC distribution patterns. We have following observations and proposal.
Observation 1: For a given CRC polynomial, CRC distribution can be done with simple interleaving pattern designed at the maximum supported information block size. 
Observation 2: For a given CRC polynomial, CRC distribution for all block sizes can be derived based on the mother interleaving pattern. 

Proposal 1: CRC distribution for polar coding should be supported based on a single interleaver pattern designed for the maximum info block size (Kmax). All other distribution patterns can be derived by blanking the info bit indices which are above the block size (K).  
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Annex
In the annex we give another example that could be implemented by simple column bit accessing method. 
Suppose the CRC bits to be distributed corresponds to CRC generator matrix columns C = {C1, C2, … , Cm}. There are K values in each column corresponding to K information bits to be interleaved. First, check the elements of the columns in C from bottom to up. If there is 1 bit value, use the corresponding information bit, and set the element values of unprocessed columns with the same indices to be 0; if there is 0 bit value, skip it. When all the elements of a column are visited, transmit the corresponding CRC bit. Then process the next column. 

Suppose the first three CRC bits need to be distributed for the 16bit CRC and the information block size is 20. The first three columns are obtained from the generator matrix in Figure 5. They are rewritten from left to right, corresponding to the originally bottom to up direction, just for better looking. Suppose the information bits are indexed from b1 to b20.

	C1
	  0  0  0  1  0  0  0  1  0  0  1  1  0  0  0  0  0  0  1  1

	C2
	  0  0  1  0  0  0  1  0  0  1  1  0  0  0  0  0  0  1  1  0

	C3
	  0  1  0  0  0  1  0  0  1  1  0  0  0  0  0  0  1  1  0  1


There 20 elements in each column of the CRC generator matrix, corresponding the 20 information bits. The first column C1 is visited from left to right and there are six 1s, and the corresponding information bits are transmitted and followed by which is the CRC bit:

{b4 b8 b11 b12 b19 b20 P1}

where P1 is the first CRC bit to be distributed.

At the same time the elements of C2 and C3 with the same index of those value 1 elements in C1 are set to zero. The remained columns becomes:

	C2
	  0  0  1  0  0  0  1  0  0  1  0  0  0  0  0  0  0  1  0  0

	C3
	  0  1  0  0  0  1  0  0  1  1  0  0  0  0  0  0  1  1  0  0


Similarly, in the second step, more information bits are transmitted by checking 1 bit value of C2 from left to right:
{b3 b7 b10 b18 P2}

Where P2 is the second CRC bit to be distributed.
And the column values are updated again at the same time:

	C3
	  0  1  0  0  0  1  0  0  1  0  0  0  0  0  0  0  1  0  0  0


In the third step, the information bits and CRC bit to be transmitted are: 

{b2 b6 b9 b17 P3}

Where P3 is the third CRC bit to be distributed.
So the final bit sequence to be transmitted is:

{b4 b8 b11 b12 b19 b20 P1 b3 b7 b10 b18 P2 b2 b6 b9 b17 P3}

The remained information bits are transmitted after it.

It can be seen the column values are accessed sequentially, so the implementation latency is very low.
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