3GPP TSG RAN WG1 Meeting #89 R1-1708829
Hangzhou, P.R. China 15th – 19th May 2017

Agenda item:		7.1.4.1.2
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:	Nokia, Alcatel-Lucent Shanghai Bell
Title:	LDPC design for eMBB
Document for:		Discussion and Decision
1	Introduction
LDPC design discussion for eMBB had several agreements during Ran1 #88bis meeting. According to the latest agreement [1], the base graph that supports Kmax should have following dimensions.
Working Assumption:
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined is {8448, 384} => Kbmax = 22
· To be confirmed automatically at RAN1#89 if no significant implementation or performance issues are identified.
· The base graph supporting Kmax should support the following set of shift sizes Z, where :
	Z
	a

	
	2
	3
	5
	7
	9
	11
	13
	15

	j
	0
	2
	3
	5
	7
	9
	11
	13
	15

	
	1
	4
	6
	10
	14
	18
	22
	26
	30

	
	2
	8
	12
	20
	28
	36
	44
	52
	60

	
	3
	16
	24
	40
	56
	72
	88
	104
	120

	
	4
	32
	48
	80
	112
	144
	176
	208
	240

	
	5
	64
	96
	160
	224
	288
	352
	
	

	
	6
	128
	192
	320
	
	
	
	
	

	
	7
	256
	384
	
	
	
	
	
	

· FFS by RAN1#89 whether some values can removed from the above table.
· FFS by RAN1#89 whether some of {272, 304, 336, 368} can be added to the above table.

Moving forward, all companies should follow a common framework when designing the base graph, where the selection can be done based on the performance.
Further agreement was made in Ran1 #88bis meeting on the different alternatives of the single or two base graphs,
Agreement:
The base graph design is selected from the following alternatives:
Alt 1: One base graph covering ~1/5 <= R <= ~8/9
Alt 1a: Two nested base graphs, where:
· Base graph #1
· Covers info block size K:
	Kmin1 <=K<= Kmax1, Kmin1 > Kmin, Kmax1 =Kmax
· Covers code rate R: ~1/3 <= R <= ~8/9; FFS whether Rmin can be ~1/5
· Base graph #2
· Nested within base graph #1
· Covers info block size K:
	 Kmin2 <=K<= Kmax2, Kmin2 =Kmin, Kmax2 < Kmax, where 512<=Kmax2<=2560
· Covers code rate R: ~1/5 <= R <= ~2/3
· Kbmax =16 is the starting point; lower values in the range 10<=Kbmax<16 are encouraged if feasible.
· The set of supported shift sizes is taken from the set of shift sizes supported by the base graph supporting Kmax
Alt 2: Two base graphs, where:
· Base graph #1
· Covers info block size K:
	Kmin1 <=K<= Kmax1, Kmin1 > Kmin, Kmax1 =Kmax
· Covers code rate R: ~1/3 <= R <= ~8/9; FFS whether Rmin can be ~1/5
· Base graph #2
· Not nested within base graph #1
· Covers info block size K:
	 Kmin2 <=K<= Kmax2, Kmin2 =Kmin, Kmax2 < Kmax, where 512<=Kmax2<=2560
· Covers code rate R: ~1/5 <= R <= ~2/3
· Kbmax = 10 is the starting point; higher values in the range 10<Kbmax<=16 can also be considered if necessary.
· The set of supported shift sizes is taken from the set of shift sizes supported by the base graph supporting Kmax
BLER Performance is the main criterion for selecting between Alts 1, 1a and 2 (since it is already assumed that complexity is not increased significantly by the addition of a second smaller base graph); decoding latency (e.g. evaluated by the number of edges) should also be considered as an important criterion.

From our understanding, Alt 2 provides flexibility for optimizing base graphs separately with much better performances. We have been proposing Alt 2 during past meetings, and this contribution provides the details of revised LDPC design for the eMBB considering all the agreements we highlighted above.

[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK13][bookmark: OLE_LINK14]2	LDPC coding scheme for eMBB
Code construction is mainly based on two proto-matrices to handle small and large block sizes that we expect in the eMBB scenario. In last few meetings, many companies showed that majority of the traffic in uplink might use shorter block sizes, where we think particular attention is required even with LDPC codes. The number of base graphs itself does not affect the implementation complexity, where implementation complexity mainly determined by the base graph dimensions, supported block sizes (or shift network configuration), row/column weights, and other related parameters.
In the rest of the discussion, we use the following structure for the parity check matrix (PCM), H, which represents QC LDPC codes.
 ,
where is a cyclic-permutation matrix obtained from the zero matrix and the z by z cyclically shifted identity matrix to the right. Also, often represented as a numerical entry in the matrix in the following discussion.
The summarized details of the proposed two base graphs are given in Table 1.
Table 1: LDPC coding families
	Code Family
	Block sizes
	Max code rate
	Min code rate
	Sub-matrix dimension

	
	
	
	
	Min
	Max
	Granularity

	1
	40 – 1024
	2/3
	1/5
	9
	128
	Select optimum sub-set within 9 – 128 in agreed Z values

	2
	1000 – 8448
	8/9
	1/3
	48
	384
	Select optimum sub-set within 48 – 384 in in agreed Z values

2.1 	Family 1: Short block sizes
Family 1 is mainly designed such that it provides good performance for lower code block sizes, up to K = 1024. The parity check matrix for Family 1 is shown in Annex I. The highest code rate the base graph is 2/3 and extended to the lowest rate of 1/3. The codes are optimized for heavy shortening, puncturing, and repetition.
These codes support info block size K from 40 up to 1024. These codes are optimized for puncturing, and provide good performance for a wide range of code rates.
Both CC and IR HARQ can be supported with the proposed matrices. An ordinary circular buffer can be used.
A submatrix is selected from the PCM in the Annex, based on the desired code rate. Each info block size K is associated with a specific shift size z (see chapter 1). Then, rate matching parameters (the number of padding bits, the number of systematic and parity puncturing) are determined as in [2].
Proposal 1: NR eMBB scenario requires a separate base graph to support lower block sizes.
Proposal 2: Optimal shortening/puncturing/repetition combination should be used with sub-matrix dimensions to support all block sizes.

2.2 	Family 2: Larger block sizes
Large code blocks should be used when supporting moderate to higher throughputs in the eMBB scenario. The implementation complexity of LDPC codes is mostly defined by the hardware requirements when decoding larger block sizes. Therefore, this requires some level of implementation related considerations than just focusing on the performance of the codes.
Proposal 3: LDPC codes for large block size should support good performance and implementation efficiency.
2.2.1 	Code block support
This PCM family is mainly designed to support information block sizes above 1000 bits. However, this does not have issues even to support the lower range of block sizes. Nevertheless, we see that optimized approach used in Family 1 is more suited to provide better performance at smaller block sizes. The proposed PCM is attached with the contribution as a separate Excel file. The maximum support block size is 384*22=8448 bits. The base matrix can be viewed as an extended base graph which we believe providing more freedom when optimizing for performance. Shift values for different code block sizes are obtained using simple modulo operation. The agreed Z values can be supported. The code itself can also support finer granularity of sub-matrix dimension Z. Alternatively, padding can be used together with agreed Z values to support finer granularity.
2.2.2 	Code rate and HARQ support
In this PCM family, PCM for lower code rate are generated by extension from the PCM for higher code rate. The PCM family is a rate-compatible code as shown in Figure 1, so IR HARQ can be supported by transmitting more parity bits in retransmission.

Figure 1: Structure of the Family 2 base graph
The highest code rate supported in the base graph with dual diagonal parity part is 22/25. Some parity bits for rate 8/9 can be punctured to support higher code rates than 8/9. The parity part in PCM for rate 22/25 has the agreed structure. The information bits corresponding to the first 2*z columns are punctured, so the base matrix with total size as 46*68 can support the minimum code rate as 22/(68-2)=1/3. Repetition can be used to support lower code rate than 1/3.
The extension part is divided into multiple layers, with each layer containing one or multiple rows, where each layer contains one or two rows in the designed PCM. All these layers are generated by dividing one same vector into orthogonal row(s) to guarantee only one layer decoder is needed for each layer. For each layer with two rows, the one vector is firstly divided into orthogonal rows. Then for each layer, a proper cyclic shift for the whole part is searched, and some columns are replaced by all -1 to guarantee good performance. The generated layer can be extended by inserting some columns with all -1 or removing some columns. In the generation, the same vector is used to guarantee the cyclic-permutation values in each layer, are from the same set corresponding to the vector. Based on this structured design the shifting network part can be same or shared by multiple layers and requested optimization effort will be reduced. Cyclic shifting and column processing are used to search the good performance in freedom of low-ratio of small cycles between layers. The processing can be as Figure 2.

Figure 2: An example for PCM generation based on same vector to generate different layer by division to multiple orthogonal rows and cyclic shift
Based on the above processing, we can also put one non-negative value in each column of the punctured block and still keep the row orthogonality feature for each layer. So, weights for punctured columns are related to the number of layers, providing that performance can be improved by increasing the number of layers. Obviously, the number of layers and number of rows in each layer can be optimized for a good trade-off between performance and implementation efficiency. In the proposed PCM, we consider 27 layers at rate 1/3, and there is one non-negative value for each punctured column in all the layers.
In [3], we provide simulation results for the proposed code, and we see that the proposed structured method, i.e. one vector for generation of multiple layer and cyclic shift, can provide good performance together with the row-orthogonality.
2.2.3 	Implementation aspects
When the base matrix is generated by using one vector and mapping it to multiple orthogonal rows and cyclic shifting, the shifting network used at different layers can be the same. Also, one set of cyclic shifts can be used by many other layers. As shifting network does not need to be changed from layer to layer, the decoding latency can be reduced. Overall decoding throughput and latency are much better compared to a randomized design with the same row-orthogonality.
Observation 1: The decoding latency and implementation efficiency can be improved based on the Family 2 base graph.
Proposal 4: The proposed structured method should be considered in the PCM generation, e.g. one vector for generation of multiple layer and cyclic shift, to improve the implementation efficiency.
The complexity of this kind of design versus quasi-row orthogonal or any other matrix structure can be significantly different as this allows much more freedom in terms of row-orthogonality and re-using of shifting network. Companies highlighted benefits of quasi-row orthogonality and argued that it provides some level of orthogonality in the base graph and improves the decoding throughput. We like to highlight that there is nothing called quasi-row orthogonality for a given matrix, it can be row-orthogonal or not. The only way to categorize quasi row-orthogonality is to highlight that it uses flooding of two columns to get the same benefits as a row-orthogonal base graph. We also need to remember that flooding associated with a significant level of complexity compared to all other decoder architectures.
[bookmark: _GoBack]When the base graph has conflicts, and uses multi-core block parallel decoder, conflict resolution is needed. One method could be stop-and-wait till all LLRs from above layer are updated, which leads to higher latency. The second method would be to continue decoding with old LLRs, and this may reduce the performance for a given iteration and results in more iterations. With proposed Family 2 base graph, we do not expect this kind of situation and could provide the best performance in real implementations.
Observation 2: Conflicts should be avoided to guarantee low latency of LDPC with iterative decoding.

3	Conclusion
In this contribution, we propose code construction details of LDPC for the eMBB data channel and we have following observations and proposals.
Observation 1: The decoding latency and implementation efficiency can be improved based on the Family 2 base graph.
Observation 2: Conflicts should be avoided to guarantee low latency of LDPC with iterative decoding.
Proposal 1: NR eMBB scenario requires a separate base graph to support lower block sizes.
Proposal 2: Optimal shortening/puncturing/repetition combination should be used with sub-matrix dimensions to support all block sizes
Proposal 3: LDPC codes for large block size should support good performance and implementation efficiency.
Proposal 4: The proposed structured method should be considered in the PCM generation, e.g. one vector for generation of multiple layer and cyclic shift, to improve the implementation efficiency.
References
[1] RAN1 Chairman’s notes, Ran1 #88bis, Spokane, U.S.A.
[2] R1-1708828, “Rate matching of LDPC for eMBB”, Nokia, ASB
[3] R1-1708830, “Performance of LDPC designs for eMBB”, Nokia, ASB
Annex I
For Family 1, the extensions are given below. These define PCM’s for rates 2/3, 1/2, 2/5 and 1/3.
	46
	1
	48
	3
	51
	10
	13
	-1
	-1
	-1
	1
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	-1
	52
	2
	55
	39
	-1
	-1
	53
	24
	16
	-1
	0
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	6
	55
	-1
	50
	-1
	-1
	-1
	-1
	-1
	-1
	0
	-1
	0
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	48
	8
	-1
	-1
	-1
	20
	-1
	-1
	53
	8
	-1
	-1
	-1
	0
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	17
	59
	-1
	-1
	-1
	-1
	33
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	0
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	30
	-1
	-1
	-1
	48
	6
	48
	56
	-1
	-1
	1
	-1
	-1
	-1
	-1
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	1
	11
	-1
	-1
	-1
	-1
	-1
	-1
	9
	13
	-1
	-1
	-1
	-1
	-1
	-1
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	22
	-1
	31
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	27
	13
	-1
	56
	-1
	-1
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	38
	56
	58
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	-1
	4
	-1
	-1
	24
	-1
	44
	4
	-1
	-1
	13
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	2
	-1
	48
	45
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	14
	9
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	2
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	20
	-1
	-1
	27
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	28
	-1
	-1
	-1
	33
	-1
	-1
	-1
	-1
	-1
	-1
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	-1
	3
	-1
	-1
	-1
	59
	-1
	-1
	-1
	-1
	-1
	19
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	0
	-1
	-1
	-1
	-1
	-1
	-1

	0
	-1
	-1
	-1
	-1
	-1
	-1
	46
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	36
	-1
	-1
	-1
	11
	-1
	-1
	-1
	0
	-1
	-1
	-1
	-1
	-1

	42
	-1
	-1
	27
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	7
	-1
	-1
	-1
	-1
	-1
	-1
	29
	-1
	-1
	-1
	0
	-1
	-1
	-1
	-1

	-1
	44
	-1
	-1
	-1
	-1
	-1
	-1
	49
	-1
	-1
	-1
	-1
	-1
	0
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	0
	-1
	-1
	-1

	9
	49
	-1
	57
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	0
	-1
	-1

	2
	40
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	40
	-1
	-1
	-1
	-1
	-1
	-1
	0
	-1

	-1
	9
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	7
	-1
	0

image1.emf
0

0

KN-KN

T

-N

Systematic bitspuncturing

1st Tx. PCM

Rate-compatiblePCMthat

supports IR HARQ

N-K

N

T

-N

0

oleObject1.bin
0

0

0

K

N-K

NT-N

Systematic bits puncturing

1st Tx. PCM

Rate-compatible PCM that supports IR HARQ

N-K

NT-N

image2.emf
P1P2P3P4P5P6P10P11P12

extension

P1P5P11

P2P4

P12P3

P6P10

P6P10

P11P12

P2

P1P5P3P4

Divide to

multiple rows

& cyclic shift

oleObject2.bin
P1

P2

P3

P4

P5

P6

P10

P11

P12

extension

P1

P5

P11

P2

P4

P12

P3

P6

P10

P6

P10

P11

P12

P2

P1

P5

P3

P4

Divide to multiple rows & cyclic shift

