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1. Introduction
In last RAN1 meeting, a conclusion was formed to study polar code construction techniques to facilitate early termination without degrading BLER or latency. Examples include distributed CRC/parity-check/hash, path metric based pruning, data-independent scrambling, etc. 
2. Discussion
Several early termination techniques have been introduced in previous RAN1 meetings. They can be divided into two groups: data-independent schemes (such as UEID-based ET) and data-dependent ones (such as distributed CRC, DSPC etc.). Firstly, note that these groups have different application areas (Fig. 1). In other words, data-dependent schemes are responsible for decoding termination on relatively later stage, when a significant amount of info bits is decoded. In contrast, UEID-based ET is responsible for termination on early stage, when frozen bits decoding is performed.
Thus, UEID-based ET should terminate decoding of unintended transmission, while data-dependent ET should terminate decoding of intendent transmission when channel condition is bad to reduce latency.
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Figure 1. Application areas of different early termination techniques
In this contribution, we discuss both data-independent and data-dependent schemes.
3. Data independent scrambling
In past several meetings, it was proposed that placing UE Identifier into frozen bit locations can provide path metric divergence which is helpful for early termination. While this principle itself is useful in practice we show below that placing UEID into frozen bit is similar to data independent scrambling, which is a randomization technique that is already applied for legacy control channel and data channel transmissions (e.g. in LTE PDCCH/PDSCH) and are likely also to be applied to NR transmissions as well. 
Assume Polar encoding with the following notation – 
· K is the number of information bits (including CRC)
· N is the code size 
· Rate is given by R = KP/N
· Number of frozen bits is Nf = N – K
Several proponents (in past meetings) suggested embedding of a UE’s ID into the frozen bits. The expectation is that if a message is intended for the correct UE, then the estimated value (or path metric penalties) at frozen bit locations would be consistent with the embedded UE ID, and hence the path metrics for the correct UE will biased “positively”. Otherwise, if a wrong UE tries to decode the message, the estimated value at frozen bit locations would NOT be consistent with the wrong UEs’ ID, and hence the path metric for the wrong UE will be biased “negatively”. Thus, the wrong UE could discard the message after a certain point in decoding without having to complete the list decoding for all the K information bits. Conceptually, we agree with this principle, but we show below that it is not necessary to apply UEID into the frozen bits, but the same effect can be achieved using a data independent scrambling on the output code word of the Polar code. 
In the figure below, we illustrate a simple example of (8,3) Polar code with 5 frozen bits where UE ID (f0-f5) is placed. 
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Since Polar code is also a linear code, the above encoding can be decomposed into two portions as shown below – one consisting of the data portion (d0-d2) and the second for the data-independent potion (i.e. f0-f5). It indicates that the encoded code word C can be obtained as D + F, where D is the conventional polar codeword, and F is a codeword obtained by encoding a UEID-based input. The vector F is a data independent random sequence obtained based on UE Identifier and it can be applied post Polar encoding, i.e. the red-box is simply yielding a data independent UE-specific scrambling sequence that can be applied on the codeword rather than on the input side. 
                          UE-specific scrambling

Thus, the above two figures will yield the same decoding performance. This principle was also explained in [1] in the context of Polar coding for PBCH (with explicit time-index indication). Thus, the principle seems to be really an application of UE-specific scrambling. 
[image: ]
It is expected that UEID scrambling on the control channel would anyways be specified for randomization (similar to the scrambling applied in LTE for PDCCH and EPDCCH, and other channels). Thus, the benefits of scrambling are available for exploitation in the UE decoder for downlink control channel processing in any case. Moreover, it is highly desirable to separate techniques (such as these) out of the Polar decoder as it can impact list decoding hardware design. Moreover,  whether sufficient frozen bit locations are available or not needs to be also considered as well as how it interacts with any PC-frozen bits in case of Parity-check Polar. For example, at very high rates (not yet precluded for control channel design), there may not be sufficient locations to place UEID into the frozen bit locations. 
Observation 1: UEID encoding into frozen bits is similar to using a UE-specific scrambling on top of conventional polar encoding. 
4. Path metric-based early termination
In this section, we will take a detailed look on UEID-based early termination possibility.
Fig. 2 illustrates an equality path metric accumulation in case of:
Alt. 1. UEID embedding in frozen bits
Alt. 2. UE-specific codeword scrambling
In below simulations UEID is used as a seed for pseudorandom sequence generation according to [3]. Such sequence is placed in all frozen bit locations for Alt. 1 or scrambles whole codeword after encoding for Alt. 2. It can be seen that path metrics have the same statistics in both cases, which confirms theoretical conclusion from Observation 1.
[image: ] 
Figure 2. Path metric accumulation during a decoding process (average PM)
Divergence between correct and incorrect UEID average path metrics is observed. However, for early termination study it is needed to look at path metrics distributions (Fig. 3). As can be seen, PMs have Gaussian distribution, which overlap significantly, especially at the early stage of decoding. Moreover, the moment when divergence starts to appear depends on SNR, payload and other factors.
[image: ] Figure 3. Path metric accumulation during a decoding process (PM distribution)
Observation 2: Data-independent scrambling (e.g. UE-specific scrambling) can provide path metric divergence and allows the possibility of early-termination.
5. Distributed CRC early termination
[bookmark: _GoBack]In the simulations below list 8 with 0x77B0F 19-bit CRC and list 32 with 0x1707EA 21-bit CRC are used. Distributed CRC scheme is applied according to [4].
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Figure 1. Performance of polar code with single and distributed CRC
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Figure 2. FAR impact of CRC distribution
Observation 3: Distribution of CRC does not affect neither BLER nor FAR performance of Polar code.
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Figure 1. ET rate of distributed CRC polar code
Observation 4: Multi-bit early termination provides higher (~70-90%) probability of early termination than single-bit scheme (<10%).
Observation 5: Probability of early termination depends weakly on list size.
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Figure 2. Fraction of code bits not decoded due to distributed CRC ET
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Figure 3. Fraction of info bits not decoded due to distributed CRC ET
Observation 6: Only a small amount (<30%) of bits are not decoded due to early termination.
Observation 7: Multi-bit early termination occurs later in decoding process, i.e. saved decoding is lower than with single-bit scheme.
Observation 8: Early termination occurs later in the decoding process when list size is larger.

Latency gain is calculated by the formulae [5]:


[image: ]
Figure 4. Total latency gain from distributed CRC ET
Observation 9: Latency gain of distributed CRC early termination is at maximum ~20% with multi-bit ET scheme and <3% with single-bit ET scheme.
Observation 10: Latency gain decreases with increasing of codeblock length (lower rate or bigger payload).
[image: ]
Figure 5. CRC bits allocation within an info block
Fig.5 illustrates a real picture of CRC bits distribution within an info block (then this block will be mapped into info bit‑channels, which must be obtained from reliability sequence and sorted in decoding order). Also, note that information and CRC bits are reordered according to CRC generator matrix, which must be constructed for each payload size and transformed to satisfy distributed-CRC requirements on the fly. As can be seen the structure is pretty irregular among close KP values.
Thus, the distributed CRC scheme requires permutation of info block before encoding and after decoding. Both encoder and decoder must perform a complex generator matrix processing to determine a particular look of this permutation. Thus, latency generated by these operations most likely overcomes the latency gain obtained.
Observation 11: Distributed CRC technique has a very high implementation complexity and requires many preprocessing operations that can potentially negate any latency gains.
Given the complexity of distributed CRC scheme, it is not clear if the purported early termination gains translate to any real savings on the UE side. Also, we note there are several techniques (e.g. path metric based, candidate pruning based on SC decoding, before SC-L, assistance signaling via group common PDCCH, etc) that do not impact the basic design of Polar code. Although we have not yet evaluated other schemes (e.g. DSPC), we believe that CA Polar code with all CRC bits appended to the information block would be the best way for NR DL control design given the tight timeline for NR. 
Proposal: Adopt single CRC-aided Polar code scheme for control channel coding.
6. Conclusions
In this contribution, we look at early termination techniques and make the following observations/proposals.
Observation 1: UEID encoding into frozen bits is similar to using a UE-specific scrambling on top of conventional polar encoding.
Observation 2: Data-independent scrambling (e.g. UE-specific scrambling) can provide path metric divergence and allows the possibility of early-termination.
Observation 3: Distribution of CRC does not affect neither BLER nor FAR performance of Polar code.
Observation 4: Multi-bit early termination provides higher (~70-90%) probability of early termination than single-bit scheme (<10%).
Observation 5: Probability of early termination depends weakly on list size.
Observation 6: Only a small amount (<30%) of bits are not decoded due to early termination.
Observation 7: Multi-bit early termination occurs later in decoding process, i.e. saved decoding is lower than with single-bit scheme.
Observation 8: Early termination occurs later in the decoding process when list size is larger.
Observation 9: Latency gain of distributed CRC early termination is at maximum ~20% with multi-bit ET scheme and <3% with single-bit ET scheme.
Observation 10: Latency gain decreases with increasing of codeblock length (lower rate or bigger payload).
Observation 11: Distributed CRC technique has a very high implementation complexity and requires many preprocessing operations that can potentially negate any latency gains.
Proposal: Adopt single CRC-aided Polar code scheme for control channel coding.
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