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[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In the NR channel model report TR 38.901 [1] the additional feature called “Spatial consistency” in section 7.6.3 proposes different approaches, and it is somewhat ambiguous. The user of the channel model does not always know when to use different approaches and what their real differences are. 
This contribution discusses the fuzzy parts of the spatial consistency section, and proposes a way forward.
[bookmark: _Ref129681832] 
Discussion
Note on Correlation Distances
The correlation distances of cluster and ray specific random variables in Table 7.6.3.1-2 [1] are sometimes longer than the correlation distance of LSPs in Table 7.5-6. In addition the correlation distance for the mobility procedure B for cluster delays and angles differs again. In procedure B the correlation distances or cluster delays and angles are possibly in the range of 100 m and more.
Confusing Paragraph in Spatial Consistency Procedure Section 7.6.3.1 
The last sentence in the first paragraph is confusing.
“A new procedure, namely a spatial consistency procedure, can be used for both cluster-specific and ray-specific random variables to be generated in various channel generation steps in Subclause 7.5, so that they are spatially consistent for drop-based simulations. Alternatively, this can be used together with Procedure B described in Subclause 7.6.3.2 for spatially consistent mobility simulations.”
In addition to the text above, there is a Procedure A described in sub-section 7.6.3.2. Selection between these options is not clearly defined. 
These need to be clarified.
Comparison of Cluster Delay and Angle Evolution vs. Time for Mobility Procedures A and B
The spatial consistency in sub-section 7.6.3.1 defines spatially consistent random variables for independent drops. As such it does not support mobility. Therefore, sub-section 7.6.3.2 proposes two alternative procedures for mobility. They both have some limitations. For comparison, we prepared simulations on both methods and show result below.
Figure 1 shows the evolution of delay implemented with the two different procedures proposed in sub-section 7.6.3.2 of [1]. The Procedure A provides linearly evolving delays, and procedure B provides non-linear evolution. In the Procedure B, the delays can change very rapidly (much faster than the maximum rate calculated from the velocity of vehicle). The graphics of Procedure B is based on [1] with the method proposed in [3] to generate the spatially consistent random variables.
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	a) Procedure A: For initial values we follow Section 7.5 Steps 5 in [1], delays are exponentially distributed for a delay spread of 33 ns. Delay spread is obtained according to Steps 1 to 4 for the UMi scenario. Delays drift according to Procedure A described in Section 7.6.3.3 in [1]. 
	b) Procedure B: According to Section 7.6.3.3 in [1], the delays are Uniformly distributed within the range (0, 215 ns) where the 215 ns are obtained as  with settings for UMi from Table 7.5-6 for . 


[bookmark: _Ref480902762]Figure 1. Evolution of delay over time.

Figure 2 shows the evolution of AoD implemented with the two different procedures. In Procedure A the reflection angles are generated spatially consistent as Uniform random variables with correlation distance as specified in [1]. The corresponding reflection angles are updated based on the UE location. As such the angles will not linearly evolve, and procedure B provides non-linear evolution. The non-linear angle evolution leads to a situation in which angles can change very rapidly. Note that the angles are not wrapping from +/- 180 degrees, but something less depending on the angular spread parameters defined in Table 7.5-6 [1]. Note that this is possibly not an issue as power of such a cluster will most likely be low due to the cluster power weighting (7.6-17) in [1] of procedure B. 
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	a) Procedure A: Initial angles at time 0 are obtained following Section 7.5 Steps 6 to 8 in [1]. Random reflection angles are obtained from spatial consistent maps.
	
b) Procedure B: According to procedure B in [1], the angles are Uniformly distributed  thus in the range from (-96, 96) for the UMi scenario with 28 GHz and parameter settings in Table 7.5-6 [1]


[bookmark: _Ref480903083]Figure 2. Evolution of AoD over time.

The Steps 5-7 in Procedure B are different from the fast fading model described in Section 7.5. It means the Procedure B provides different statistics of small scale parameters than the generic model. It is also not clear how to generate uniformly distributed correlated random variables. Autocorrelation distance depends on delay spread and it feels too long (even up to 300 meters in some scenarios). 
The Uniform distribution of angles leads to a large range of possible spreads the angles, thus it will be less concentrated than in the generic model in Section 7.5. This will possibly lead to a reduced number of significant clusters since the power scaling in equation (7.6-17) of [1] will force some cluster powers with large angle values to be low. 
[bookmark: _Ref481617115]Generation of Spatially Consistent Uniform Random Variables for Procedure B
Procedure B requires to generate spatially consistent 2D Uniformly distributed random variables with certain correlation distances. Within 3GPP different methods have been discussed. No clear consensus has been made and it appears it is up to the user on how to implement it. 
Practically all of discussed methods in 3GPP consider generating i.i.d. Zero Mean Complex Normal random (iid. CN) variables on some “spatial” grid and apply some “algorithm” to obtain correlation among these iid. CN values for given locations. All of the proposed methods utilize the phase of the complex normal distributed values and interpret it as a Uniform distributed random variable.
The results in Figure 1 and 2b) for procedure B are obtained via the proposed method in [3] where the iid. CN are placed in a distance corresponding to the correlation distance and the interpolation is done according to 
	
	(1)





Figure 3: Example of generating one spatially consistent random variable Y(x,y)  [3]

In our implementation we considered only moving along a line from Y(0,0) to Y(1,0) for simplification.
An alternative interpolation formula was proposed in [5] as
	
	(2)


In [6] several different proposals for the generation of the correlated CN values are discussed. It is proposed to instead of the method of [3] the correlated CN values are generated via filtering. In this case the grid of iid. CN values are suggested to be approximately 1/20 of the correlation distance. A 2D filter is specified according to [6] (copied from there):
	,
	(3)


The 2D filter is given by 
	
,
	(4)




where and are the two-dimensional Fourier transform and inverse Fourier transform function respectively. 

The random field C with the desired spatial correlation property is obtained by applying the 2D filter H to the random field R:
	,
	(5)


Note that there might be some error in [6] so that (4) needs to be modified such that an absolute value is included as follows 
	
.
	(6)
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Figure 4: 2D filter  in dB coefficients according to (4). The x and y axis represent the filter coefficients with the tap spacing with 1/20 of the corresponding correlation distance.
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Figure 5: 2D filter  in dB coefficients according to (6). The x and y axis represent the filter coefficients.

An alternative way of defining a 2D filter and doing 2D convolution was specified in the Quadriga Model documentation [7] and [8]. 
All these filtering methods have a much higher complexity in common as the method specified in [3], however, as discussed in [6] the correlation properties of the CN should be better.
As can be seen from Figure 7 and Figure 8, the magnitude of the phases, which are used after proper scaling as the delay values, still shows rapid changes. The method of [6], where we applied a 2D convolution with the filter coefficients specified in (6) is different from the Quadriga approach. In the Quadriga approach several consecutive convolution steps are applied, see Figure 6 for an illustration. In the documentation of the Quadriga model it is stated that the additional diagonal filtering should create more smooth results which is as well what we observe when comparing Figure 7 and Figure 8. Further study is required to better understand the differences in the filtering methods and the impact on the phases of the correlated CN maps. Of particular interest is for our case the impact on the phase of the complex values as these results are used to generate delays and angles.
[image: ]
[bookmark: _Ref481615309]Figure 6: Convolution procedure in Quadriga model to obtain spatially consistent random maps. Figure copyright of the Quadriga Model documentation.
As we can see from Figure 8 the results from the Quadriga model are more smooth compared to the other 2D filtering approach. However, there occur still quite sharp changes. These sharp changes will be reflected in the delay and angle values and as well in the resulting Doppler shifts.
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[bookmark: _Ref481166150]Figure 7: Magnitude of the phase of the correlated CN field over the 2D plane sampled with distances of 1/20 of the correlation distance using the method in [6] for the filter generation but with the changed absolute values as suggested in (6).
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[bookmark: _Ref481614227]Figure 8: Magnitude of the phase of the correlated CN field over the 2D plane sampled with distances of 1/20 of the correlation distance using the method described in the Quadriga model for the filtering.

For the delays correlation distances calculated according to [1] for our UMi NLOS case is approx.130m. Thus the spacing of the CN field is 1/20 of the correlation distance is approx. 6.5m. We consider this for mobility still too large, in particular when tracking algorithms should be tested. In [6] was suggested to follow the interpolation procedure as provided in [4] and stated in (1). 

Discussion of Delay Evolution with Procedure B Considering Different Ways of Generating Correlation Map
Following [1] and do the interpolation as proposed along a line, we obtain the delays as 

,

where in our case the uniform numbers are obtained from the phases of the CN field obtained from the described procedures in Section 2.4. The magnitudes of the phases are divided by π and scaled afterwards with . In Figure 9, Figure 11, and Figure 12 examples of these evolution of the delays are detailed for the generation of the Uniformly distributed random values according to [3], the 2D filtering approach of [6] with the correction in (6) and the method of the Quadriga model [7]. The results in Figure 9 are obtained from a very fast and efficient procedure of generating the correlation map, however, we observer clearly the drawback of only having grid points on the decorrelation distances. Furthermore we observe the typical shape of the delay evolution due to the interpolation of the complex numbers. For several of the cluster delays we observe that the evolution can change more rapid than actual possible change due to the movement of the user terminal. This is particular true when the interpolations pass through or close by zero. See for instance Figure 10 where the interpolation for the yellow cluster delay with the rapid change at approx. 85m occurs. Depending on the values of the iid. CN , such an interpolation close by zero can occur at any distance. 
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[bookmark: _Ref481617241]Figure 9: Delays obtained from the procedure [3] with 4 iid. CN variables on the grid corresponding to the correlation distance of approx. 130m. We observe clearly at the intervals of the correlation distances the sharp changes. In addition changes faster than the mobile moves can as well occur due to the interpolation procedure. This is particularly true when the interpolation of the CN variables crosses through/passes by zero, see Figure 9. These leads to rapid phase changes, and thus delay changes as well.
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[bookmark: _Ref481612057]Figure 10: Rapid change due to interpolation close by zero using the procedure of [3]. The diamonds mark the iid. CN  at the grid points corresponding to the correlation distance. From the first to the second grid point the interpolation passes almost through zero. This interpolation from the 2nd to 1st and 4th quadrant creates rapid phase changes. 
As we already observed from Figure 7, the phases change quite rapidly with the 2D filtering approach according to [6]. Although the spatial grid is quite dense (1/20 correlation distance) we still observe rather high change/drifting rates of the delays. Quite often faster than what our moving velocity would allow. From the current point of view this filtering approach seems to be not suited for cluster delay and angle evolutions. As shown in Figure 12 and expected from the correlation map shown in Figure 8, the filtering approach of the Quadriga model creates more smooth delay evolutions. Occasionally there occur still to fast changes. Without a detailed investigation our suspicion is that here occurs as well an interpolation close to or through zero. 
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[bookmark: _Ref481617244]Figure 11: Delays obtained from the filtering procedure [6] and the modified filter H generation. Now there are every 6.5 m due to the filtering interval sharp changes. Furthermore the noisy behavior we observed in Figure 6 still results in quite rapid delay changes. Additionally the interpolation method (1) suggested in [6] for a finer distance resolution than 6.5m creates a strange “S” shaped behavior on the delays. Almost like at every 6.5m there is first a rapid change in delay, it slows down and afterwards speeds up again.
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[bookmark: _Ref481617245]Figure 12: Delays obtained from the filtering procedure of the Quadriga model. Clearly we see a much more smooth behavior for large parts of the distances. However, as marked with the red dashed ellipse there might still be rapid changes occurring at any distances. This is essentially as well here the case because the filter might as well lead to filtered values passing through or by zero. Again the interpolation procedure creates this “S” shaped patterns.
Similar behavior, but now shown here, can be observed for the angles. The angles similarly depend in procedure B on the generation of 2D Uniform random variables with some correlation distance. The interpolation or filtering when close to or through zero will create rapid angular changes. In the angle domain such a fast change might be interpreted as passing close by the cluster. However, in this case the delay should possibly change as well for that cluster in the sense that for instance the cluster was first approached, so the delay becomes smaller and increases after one passed by. However it seems there is no correlation between drifting of delays and angles.
Additional observations due to the change on the generation of delays and angles in procedure B
In the generic method of Section 7.5 in [1], the cluster delays follow an exponential distribution. Thus there is a concentration of short cluster delays and in addition there are as well clusters with rather long delays. Note that in Procedure B such late clusters will not be generated. Procedure B generates the cluster delays Uniformly distributed in the delay domain. So there is no higher concentration of clusters in the early part which decreases with delay! The maximum delay range in Procedure B appears to be smaller as compared in the generic method of Section 7.5 that is used in Procedure A. 
Rapid changes of angles and delays in procedure B can occur at any distance. Thus it seems not very well suited for tracking algorithms. 
Procedure A follows the original steps, however, when not limiting the drifting of cluster delays and angles they might drift far apart. An easy way of limiting the drifting can be done by limiting the maximum moved distance. Additionally because in the current proposal the cluster powers are only updated according to the spatially consistent delay spread the angular spread versus distance/location behaves according to the drifting of the cluster angles and not the spatially consistent angular spread map. Again the limiting of the maximum moved distance in Procedure A will improve the behavior. Note that if the distance range should be larger for procedure A, a different procedure that limits the angles to a certain range is required. In addition if the spatially consistent angular spreads should be followed a rescaling of the cluster powers is required accordingly. This is in particular true because the correlation distance of the LSP parameters is typically as well only on the range of 10 to 15m. 
 
Conclusions
We discussed the different approaches on spatial consistency modelling. The selection of different methods is not clearly defined, and the implementation was left to the companies to decide. We encourage companies to discuss the pros and cons of these approaches, show their performance graphics, and improve the TR accordingly.
Procedure A provides smooth evolution of delays and angles, but due to the nature of the evolution, it can be used for a limited period/distance only. Procedure B provides random evolution of parameters, but different implementation methods of for generating spatially consistent cluster parameters all have some issues. Some of the parameters change too rapidly in Procedure B.
Procedure A has the advantage on better suitability of tracking algorithms. If moved distances in procedure A are to large things like angular spreads might drift too far and become unrealistic. Procedure B has the advantage of keeping the LSP parameters nice over all the moved distances. However, the SS statistics for instance the cluster arrival rates and the lower concentration of angles at the BTS side might be problematic. In addition some of the parameters change too rapidly.
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