3GPP TSG RAN WG1 Meeting #89 	 R1-1708158
Hangzhou, China, May 15th - 19th, 2017

Agenda Item:	7.1.4.3
Source:	Huawei, HiSilicon
Title:	Soft-combining for PBCH
Document for:	Discussion and Decision

[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
NR-PBCH strives to supports a soft combination among the received vectors from multiple blocks within or across SS burst set [1]:
Agreements:
· RAN1 strives to supports combining NR-PBCH
· The different options to be considered:
· Across SS Burst Set
· Within SS Burst Set
· Within subset of an SS burst set, e.g. within an SS burst, within a number of slot(s) etc.
In this contribution, we investigate that how a polar code to support the soft-combination for NR-PBCH, and focus on explicit and implicit soft combination schemes respectively.
For other NR-PBCH related discussion, we suggest a visit to the following papers
· Channel coding performance comparison [2]
· NR-PBCH channel design [3]
· SS block time index indication [4]
Discussion
Explicit timing index and soft combination
It is well known that Polar code is a linear code that supports explicit soft-combination. A generic description of its explicit soft combination was presented in [5].
In brief, the coded bits explicit encoded from the payload including both timing index and information bits, can be represented as a scrambling operation on the coded bits by only information bits. And the specified scrambling pattern is just the encoded bits only for the timing index. A more detail description can be found in Appendix A.
For m timing index, say t1, t2, … , tm, there would be m different associated scrambling patterns (S(t)) used to generate different PBCH copies for Tx, as shown in Figure 1.

[bookmark: _Ref481786747]Figure 1. Explicit timing index serving as timing-related scrambling patterns
The advantages of an explicit-timing-index are:
· If channel condition is good enough, a UE can decode one block with only one SCL decoding, to obtain the payload and timing index immediately;
· No need to try different the scrambling patterns before decoding because the linear property of Polar codes
· If channel condition is not good enough, a UE can choose to combine a number of blocks.
· An LTE-like blind detection method can be used to combine multiple received copies by simply going through all the possible scrambling patterns by sliding window.
· UE can have the performance gain attributed to the power addition and no limitation on the number of blocks to be used together.
Figure 2 shows the BLER performance gain attributed to soft-combination with explicit timing index indication, where exactly 3dB improvement can be found for soft-combining 2 received blocks in AWGN.
[image:]
Figure 2	. Performance gain attributed to soft-combination with explicit timing index indication
Observation-1: Polar Code supports the soft-combination in an explicit timing index way.

Implicit timing index and soft combination
Basic design
Consider a NR-PBCH coding chain as Figure 3 where a cumulative permutation scheme is employed to generate each transmitted copy.

[bookmark: _Ref481592742]Figure 3. NR-PBCH with implicit timing index
Encoding:
At the Tx side, a timing index is conveyed by permutation on the coded bits. For instance, we need to convey two different timing indices like t1(e.g. 0x01) and t2(e.g. 0x02):
· Apply 1 time permutation with pattern () on coded bits for convey timing index t1
· Apply 2 times permutation with pattern () on coded bits for convey timing index t2
· Apply the rate-matching as usual after the permutation.

Decoding:
At the Rx side, de-rate-matching is firstly applied. Since a decoder knows the exact relative permutation offset (Δt) between ti and ti+1, it can just simply apply the de-permutation pattern (-1) in term of Δt to align and combine with the Rx soft copies. For instance, we need to combine two different copies with timing indices like t1(e.g. 0x01) and t2(e.g. 0x02):
1. Apply 1 time de-permutation with pattern(-1) on Rx LLR(t2)
2. Add the de-permutated LLR(t2) to LLR(t1)
3. Do the Polar decoding one time and recover the timing index by blind CRC checks.
For the step 3, because we have an equivalent relation between a pre-polar-encoder transform matrix () and post-polar-encoder permutation pattern () for encoding procedure, so only the de-transform operation by (-1) need to be applied on the decoded bits before the CRC checks. (In Figure 4, GN is polarization transformation matrix)

[bookmark: _Ref481787224] Figure 4. Equivalent relation between and
We summarize the decoding and blind detection for timing index procedure in Figure 5.

[bookmark: _Ref481787234]Figure 5. Decoding and blind detection procedure
Note for the implicit soft combining, one time decoding is required. And about how to recover the implicit timing index, we can see that only the logical operation in de-transformation on decoded bits and CRC checks are required. Since the pre-polar-encoder transformation matrix () is equivalent to post-polar-encoder permutation pattern (), the () pair is worth well-designed for low latency and good detection performance.
Rate-matching:
The rate-matching scheme is independent of the permutation. At the Tx side, the payloads (info. + CRC) are firstly encoded into polar code with mother code length, permutated according to the timing index, and then repeated/punctured to match the available physical resources. At the Rx side, de-rate-matching is firstly applied to recover the mother code length LLR vector and then de-permutated for soft combination and further blind detection.
() pair by cyclic shift
Here we give a simple example of permutation (Px): N/4 cyclic shift on the coded bits to support 4 different copies. A theoretical explanation for an N/4 cyclic shift design is detailed in Appendix B.
The permutation Px allows a straightforward way to generate 4 copies by extracting bits from a circular buffer with a different starting positions relative offset is N/4, as shown in Figure 6.
[image:]
[bookmark: _Ref481739169]Figure 6. A circular buffer to generate 4 different copies
This circular buffer is mathematically represented as multiplying over the coded bits vector with a two-diagonal form matrix, as shown in left side of Figure 7. Its pre-polar-encoder transformation matrix is an up-triangular matrix with a very regular and sparse form as shown in right side of Figure 7:

[bookmark: _Ref481739609]Figure 7	 Example of forms of and of cyclic shift
The () pair of cyclic shift is very simple and with low implementation complexity. The multi-diagonal form of applied on encoding vector implies that ith position will be added by jth position with N/4 ahead of ith. According to the recursive feature of Polar code and universal partial order property, the jth position are always less reliable than the ith position, and thus, once the jth bit is info bit, the ith will always be info bit.
Figure 8 shows the performance gain attributed to soft-combination with implicit timing index indication, where 3dB gain can be found for soft-combining 2 received copies on AWGN.
[image:]
[bookmark: _Ref481670720]Figure 8. Performance gain attributed to soft-combination with implicit timing index indication
Similarly, if the coded bits of the polar code is divided into four N/4-subsets, within each subsets, the coded bits can also be cyclic shifted by N/16 simultaneously, which allows to get more copies in a multi-level cycle shift way. It is noted that more powerful and matrices can be found in order to support larger copy numbers if necessary.
Observation-2: Polar Code supports the soft-combination in an implicit timing index way.

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Conclusion
In this contribution, we present several soft-combination schemes for polar code. We have the following observation and proposals.
Observation-1: Polar Code supports the soft-combination in an explicit timing index way.
Observation-2: Polar Code supports the soft-combination in an implicit timing index way.
References
[bookmark: _Ref481266817][bookmark: _Ref457925438]Chairman’s notes in 3GPP TSG RAN WG1 #88bis
[bookmark: _Ref481267226][bookmark: _Ref480531579]R1-1706969, "Channel coding for PBCH", Huawei, HiSilicon, RAN1 #89
[bookmark: _Ref481786630]R1-1708162, "Discussion and evaluation on NR-PBCH design", Huawei, HiSilicon, RAN1 #89
[bookmark: _Ref481786636]R1-1708166, "Discussion on SS block time index indication", Huawei, HiSilicon, RAN1 #89
[bookmark: _Ref481786685]R1-1704249, "Channel Coding for PBCH", Huawei, HiSilicon, RAN1 #88bis
[bookmark: _Ref481684812]R1-1705084, "Theoretical analysis of the sequence generation", Huawei, HiSilicon, RAN1 #88bis
[bookmark: _Ref481685046]Schürch, Christian. "A partial order for the synthesized channels of a polar code", IEEE ISIT, 2016.

Appendix A: Linear property of Polar code and CRC
Linear CRC
CRC is a linear function with a property that:

Linear Polar
Given a Polar code as follows:
u GN = x
where u is the source vector, with known bits in the frozen set and information bits in the remaining positions, GN is the polarization transformation matrix, and x is coded vector.
Due to the linear coding property of Polar code, we can have the following equation:
 (u+p) GN = x + q
where pGN = q. Scrambling the u with p is equivalent to scrambling x with q.
Linear CRC + Polar
An explicit timing index can be considered as a timing-related scrambling on the vector of MIB and explicit timing index positions. Thus from the view of the coded bit side, the effect introduced by an explicit timing-index can also be extracted out and considered as a timing-related additive scrambling code.

Figure A - 1 Linear Combination of Data-Codeword and Time-indexed Scrambling Code

Appendix B: Circular permutations of Polar Codes
This appendix demonstrates that any rate polar code constructed with help of sequence satisfied Universal Partial Orders [6] (for example, PW sequence) admits circular permutations.
Let fix a notations. By denote polarization transformation matrix of size , , by denote all synthetic subchannels and let

be the result of their encoding. For simplicity let us consider circular shift of the vector for positions to the right. It is obvious that any codeword after four times applying of will come back to initial form, but there is a codeword which can’t come back to initial form early than after four times. In such case we can say that degree of is 4. The matrix of can be represented as
where for each :
An example of when presented on the Figure B - 1.

[bookmark: _Ref481684963]Figure B - 1 Matrix of for
Circular shift induces transformation on the synthetic subchannels. The matrix of can be find from corresponding relation between - and -vectors

as follows

(because). By several technical steps it can be shown that matrix of always has form of two-diagonal matrix with space between diagonals equals to :
where for each :

Figure B - 2 Matrix of for
Now we are ready to prove that any rate polar code constructed with help of sequence governed by UPO admits , i.e. maps codewords of a such polar code to the codewords. It is equivalently that maps information vectors of polar code to the information vectors. Let us fix for simplicity (polar code constructed with a help of sequence satisfied UPO. Then by let us denote the set of most reliable subchannel’s indices determined by and assume . It is easy to see that action of on -vectors means just addition of to for all . Because any information vector of considered polar code has always zeroes values at all positions from and some (arbitrary chosen) values at all positions from then for inducing the mapping of information vectors to information vectors only the transformation must preserve the values at frozen positions. It is equivalent to the following condition:
.			(B.1)		
Indeed, we can easily add information or frozen symbol to the information one, the sum of two frozen subchannels is also allowed. But we can’t add information symbol to frozen without keeping its value. To see that condition (B.1) holds let us observe that polar codes are constructed based on the sequence governed by UPO, i.e. following property holds:
	if and then .			(B.2)		
Recall the definition 8 in [7] that when the binary-radix representation of indices and are , respectively and they have a difference only
(a) in one position ()
or
(b) in two consequent positions and ,
then if and only if
(but) and, for the case (b), (but =0).	(B.3)		
[bookmark: _GoBack]Let us consider any . We have three options for possible values of j’s binary representation:
1) . Then
2) . Then
3) . Then
Note that case is not considered because in such case . For all three cases in accordance with (B.3) we have , so, if then . Therefore, (B.1) is hold and any polar code respecting UPO has as mapping of codewords to codewords.

image2.emf
SNR (dB)

-12 -11 -10 -9 -8 -7 -6 -5

B

L

E

R

10

-4

10

-3

10

-2

10

-1

10

0

Info. = 24, CRC = 19, List = 8, Coded bits = 480

Single copy

Soft-combination of 2 copies with blind detection

3dB

image3.emf
Permutation

(P

x

)

Info+CRC

Tx Copy #1

Polar encoder

Permutation

(P

x

)

Rate-

Matching

Permutation

(P

x

)

Rate-

Matching

Rate-

Matching

Rate-

Matching

...

...

...

...

Tx Copy #2

Tx Copy #3

Tx Copy #m

Microsoft_Visio___222.vsdx
Permutation
(Px)

Info+CRC
Tx Copy #1
Polar encoder

Permutation
(Px)
Rate-Matching

Permutation
(Px)
Rate-Matching
Rate-Matching
Rate-Matching
...
...
...
...
Tx Copy #2
Tx Copy #3
Tx Copy #m

image4.emf
u

I

F

G

N

T

u

T

u

T

u

G

N

G

N

G

N

Info+CRC

u

I

F

P

x

P

x

P

x

Info+CRC

G

N

=

T

u

 = G

N

∙P

x

∙G

N

Microsoft_Visio___333.vsdx
u
I
F
GN
Tu
Tu
Tu
GN
GN
GN
Info+CRC
u
I
F
Px
Px
Px
Info+CRC
GN
=
Tu = GN∙Px∙GN

image5.emf
CRC check?

Pass

Infor. bits, timing index

Not

 pass

De-transform with (T

u

-1

)

by maximum m-1 times

Polar decoding

De-permutation & soft-

combination

De-rate-matching

LLR(t

1

), LLR(t

2

),...LLR(t

m

)

Microsoft_Visio___444.vsdx
CRC check?
Pass
Infor. bits, timing index
Not
 pass
De-transform with (Tu-1) by maximum m-1 times
Polar decoding
De-permutation & soft-combination
De-rate-matching
LLR(t1), LLR(t2),...LLR(tm)

image6.png
-

Copy #1:
Copy #2:
Copy #3:

Copy #4:

image7.emf
1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

P

x

N

N

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

N

N

T

u

-1

N/4

N/4

Microsoft_Visio___555.vsdx
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
Px
N
N
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
N
N
Tu-1
N/4
N/4

image8.emf
SNR (dB)

-12 -11 -10 -9 -8 -7 -6

B

L

E

R

10

-4

10

-3

10

-2

10

-1

10

0

Info. = 24, CRC = 19, List = 8, Coded bits = 480

Single copy

Soft-combination of 2 copies

3dB

image9.wmf
(

)

(

)

(

)

CRCCRCCRC

abab

Å=Å

oleObject1.bin

image10.emf
Data Payload Timing index CRC

Data Payload CRC(D)

Timing index CRC(T)

=

⊕

PC/CA

Polar

Encoder

PC/CA

Polar

Encoder

PC/CA

Polar

Encoder

C(D,T)

C(D)

C(T)

oleObject2.bin
Data Payload

Timing index

CRC

Data Payload

Timing index

CRC(D)

CRC(T)

=

⊕

PC/CA Polar Encoder

PC/CA Polar Encoder

PC/CA Polar Encoder

C(D,T)

C(D)

C(T)

image11.emf
0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

N/4

Microsoft_Visio___666.vsdx
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
N/4

image12.emf
1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

N/4

Microsoft_Visio___777.vsdx
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
N/4

image1.emf
Polar encoder

Scrambling by S(t

1

) Scrambling by S(t

2

) Scrambling ... Scrambling by S(t

m

)

Tx Copy #1 Tx Copy #2 Tx Copy ... Tx Copy #m

Info+CRC

Microsoft_Visio___111.vsdx
Polar encoder
Scrambling by S(t1)
Scrambling by S(t2)
Scrambling ...
Scrambling by S(tm)
Tx Copy #1

Tx Copy #2
Tx Copy ...
Tx Copy #m
Info+CRC

