3GPP TSG RAN WG1 Meeting #88bis  				R1-1707675
Hangzhou, China, 15th - 19th May 2017
Agenda Item:	7.1.4.2.1.3
Source: 	LG Electronics
Title: 	Discussion of rate matching for Polar codes
[bookmark: Source][bookmark: Title][bookmark: DocumentFor]Document for:	Discussion and decision
1. Introduction
This contribution provides a new puncturing with shortening scheme that satisfies the nested attributes used to obtain different mother code lengths. The nested single sequence requires a single sequence length of memory read time for information allocation regardless of the mother code size (memory read time can be reduced depending on sequence type. e.g. memory read time of symmetric nested sequence: sequence length/2). Therefore, when latency is taken into consideration, a sequence can be stored in advance according to the mother code size. On the other hand, a proposed nested puncturing with shortening scheme requires a memory read time equal to the length of the shortening / puncturing by calculating the starting read address of memory for each mother code size. 

2. Puncturing with shortening scheme
2.1. Nested structure
Input data may not be transmitted due to puncturing. For example, in figure 1, when Y0 is punctured, U0 is not included in the transmitted coded bits. If U0 is information, the information bit should be replaced by a known bit (freezing). Puncturing pattern can be represented by the row weight of the transform matrix G in descending order, and the order of puncturing bit for figure 1 is {7, 6, 5, 3, 4, 2, 1, 0}. If the row weight of the transform matrix G is used as a puncturing pattern in descending order, the number of input bit connected to the each punctured bit is always '1'. Figure 2 and 3 illustrate weight and its corresponding row-index for matrix G for N = 8, 32, respectively. 
[image: ]
Figure 1. Encoding module of Polar code
[image: ]
Figure 2. Row-index of transform matrix G (N=8)
The weight order is a nested structure (yellow region) in figure 3, which can be constructed by collecting entries within the largest mother code size.
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Figure 3. Row-index of transform matrix G (N=32)
Observation 1: The descending order considering the row weight of the transform matrix G is a nested structure.

2.2. Memory read address
A single nested puncturing pattern can be stored in a memory, and read addresses from memory can use Pascal's Triangle which is triangular array of the binomial coefficients. This nested method reads punctured coded bit indices according to the mother code sizes and code block lengths from the stored pattern.
The number of indexes having weight w for mother code sizes N is as follows:

 						(1)

Where, . 
The starting read address of each weight from the stored memory by the maximum length (Pmax) of the puncturing pattern is as follows: 


+-1			 	(2)

Where,  denotes start address of each weight. After that, address is decremented from (2). 
For example, the puncturing pattern (Pmax=Nmax=32) in figure 3 and the memory read address (2) are used to create a puncturing pattern of N = 8. The starting read address is (3).

				(3)
Each starting read address when the weight is 4, 2, and 1 is shown in (4) to (6).

				(4)

					(5)

						(6)
Figure 4 shows some memory addresses for N = 32 as red values.
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Figure 4. Memory address table for N=32

Observation 2: The memory read address of puncturing pattern can be easily constructed by using Pascal's Triangle from the transform matrix G.

2.3. Re-information/frozen bit mapping
The information bit location can be reassigned by skipping in the order of higher reliability within the frozen bit set. Figure 5 shows an example of reassigning the data on freezing position to the frozen bit position when the puncturing and freezing index is {7, 6}. 
[image: ]
Figure 5. Illustration of puncturing and information bit allocation

2.4. Simulation results
We present numerical results using information bit length K(including 19bit-CRC)=120 (red line in figure 6), 160(blue line in figure 6), code block length M=240, mother code sizes N=256, List size L=8 parameters. CRC polynomials is given by [2]:
.
In this contribution, the BLER performances are evaluated for Q-sequence[1] + bit-reversal(BR) puncturing with shortening, Q-sequence + proposed puncturing with shortening, New sequence + proposed puncturing with shortening. The new sequence is given in the table in Appendix [3].
[image: ]
Figure 6. BLER performance of different code sequences and shortening schemes
From the simulation results, it can be seen that Q-sequence+BR, Q-sequence+proposed and new sequence+proposed schemes have comparable BLER performances. Therefore, we can apply proposed method to reduce memory.
Observation 3: Proposed puncturing with shortening scheme to Q-sequence and new sequence has comparable BLER performance.
Proposal 1: Puncturing pattern can be derived from the row weight of the transform matrix G to reduce memory.

3. Conclusion
In this contribution, we considered the nested structure and memory read address from the transform matrix G. Based on the above discussion, we have the following observations and proposals.
Observation 1: The descending order considering the row weight of the transform matrix G is a nested structure.
Observation 2: The memory read address of puncturing pattern can be easily constructed by using Pascal's Triangle from the transform matrix G.
Observation 3: Proposed puncturing with shortening scheme to Q-sequence and new sequence has comparable BLER performance.
Proposal 1: Puncturing pattern can be derived from the row weight of the transform matrix G to reduce memory.
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Appendix: An Example of Code Sequence (Low-reliability bit first)
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