3GPP TSG RAN WG1 Meeting #88bis  				R1-1707675
Hangzhou, China, 15th - 19th May 2017
Agenda Item:	7.1.4.2.1.3
Source: 	LG Electronics
Title: 	Discussion of rate matching for Polar codes
[bookmark: Source][bookmark: Title][bookmark: DocumentFor]Document for:	Discussion and decision
1. Introduction
This contribution provides a new puncturing with shortening scheme that satisfies the nested attributes used to obtain different mother code lengths. The nested single sequence requires a single sequence length of memory read time for information allocation regardless of the mother code size (memory read time can be reduced depending on sequence type. e.g. memory read time of symmetric nested sequence: sequence length/2). Therefore, when latency is taken into consideration, a sequence can be stored in advance according to the mother code size. On the other hand, a proposed nested puncturing with shortening scheme requires a memory read time equal to the length of the shortening / puncturing by calculating the starting read address of memory for each mother code size. 

2. Puncturing with shortening scheme
2.1. Nested structure
Input data may not be transmitted due to puncturing. For example, in figure 1, when Y0 is punctured, U0 is not included in the transmitted coded bits. If U0 is information, the information bit should be replaced by a known bit (freezing). Puncturing pattern can be represented by the row weight of the transform matrix G in descending order, and the order of puncturing bit for figure 1 is {7, 6, 5, 3, 4, 2, 1, 0}. If the row weight of the transform matrix G is used as a puncturing pattern in descending order, the number of input bit connected to the each punctured bit is always '1'. Figure 2 and 3 illustrate weight and its corresponding row-index for matrix G for N = 8, 32, respectively. 
[image: ]
Figure 1. Encoding module of Polar code
[image: ]
Figure 2. Row-index of transform matrix G (N=8)
The weight order is a nested structure (yellow region) in figure 3, which can be constructed by collecting entries within the largest mother code size.
[image: ]
Figure 3. Row-index of transform matrix G (N=32)
Observation 1: The descending order considering the row weight of the transform matrix G is a nested structure.

2.2. Memory read address
A single nested puncturing pattern can be stored in a memory, and read addresses from memory can use Pascal's Triangle which is triangular array of the binomial coefficients. This nested method reads punctured coded bit indices according to the mother code sizes and code block lengths from the stored pattern.
The number of indexes having weight w for mother code sizes N is as follows:

 						(1)

Where, . 
The starting read address of each weight from the stored memory by the maximum length (Pmax) of the puncturing pattern is as follows: 


+-1			 	(2)

Where,  denotes start address of each weight. After that, address is decremented from (2). 
For example, the puncturing pattern (Pmax=Nmax=32) in figure 3 and the memory read address (2) are used to create a puncturing pattern of N = 8. The starting read address is (3).

				(3)
Each starting read address when the weight is 4, 2, and 1 is shown in (4) to (6).

				(4)

					(5)

						(6)
Figure 4 shows some memory addresses for N = 32 as red values.
[image: ]
Figure 4. Memory address table for N=32

Observation 2: The memory read address of puncturing pattern can be easily constructed by using Pascal's Triangle from the transform matrix G.

2.3. Re-information/frozen bit mapping
The information bit location can be reassigned by skipping in the order of higher reliability within the frozen bit set. Figure 5 shows an example of reassigning the data on freezing position to the frozen bit position when the puncturing and freezing index is {7, 6}. 
[image: ]
Figure 5. Illustration of puncturing and information bit allocation

2.4. Simulation results
We present numerical results using information bit length K(including 19bit-CRC)=120 (red line in figure 6), 160(blue line in figure 6), code block length M=240, mother code sizes N=256, List size L=8 parameters. CRC polynomials is given by [2]:
.
In this contribution, the BLER performances are evaluated for Q-sequence[1] + bit-reversal(BR) puncturing with shortening, Q-sequence + proposed puncturing with shortening, New sequence + proposed puncturing with shortening. The new sequence is given in the table in Appendix [3].
[image: ]
Figure 6. BLER performance of different code sequences and shortening schemes
From the simulation results, it can be seen that Q-sequence+BR, Q-sequence+proposed and new sequence+proposed schemes have comparable BLER performances. Therefore, we can apply proposed method to reduce memory.
Observation 3: Proposed puncturing with shortening scheme to Q-sequence and new sequence has comparable BLER performance.
Proposal 1: Puncturing pattern can be derived from the row weight of the transform matrix G to reduce memory.

3. Conclusion
In this contribution, we considered the nested structure and memory read address from the transform matrix G. Based on the above discussion, we have the following observations and proposals.
Observation 1: The descending order considering the row weight of the transform matrix G is a nested structure.
Observation 2: The memory read address of puncturing pattern can be easily constructed by using Pascal's Triangle from the transform matrix G.
Observation 3: Proposed puncturing with shortening scheme to Q-sequence and new sequence has comparable BLER performance.
Proposal 1: Puncturing pattern can be derived from the row weight of the transform matrix G to reduce memory.

4. Reference
R1-1611254, “Details of the Polar code design”, Huawei, HiSilicon, Reno, USA, November 10th – 14th, 2016.
Philip Koopman, “CRC Hamming Weight Data, https://users.ece.cmu.edu/~koopman/crc/hw_data.html.
R1-1707674, “Information bit allocation of Polar codes,” LG Electronics. 


Appendix: An Example of Code Sequence (Low-reliability bit first)
[bookmark: _GoBack][image: ]
image3.emf
1 2 4 8 16 32

0 1 3 7 15 31

2 5 11 23

4 6 13 27

8 9 14 29

16 10 19 30

12 21

17 22

18 25

20 26

24 28

weight



index


image4.wmf
)

(

log

)

(

log

w

N

2

2

C


oleObject1.bin

image5.wmf
÷

÷

ø

ö

ç

ç

è

æ

=

b

a

C

b

a


oleObject2.bin

image6.wmf
å

-

=

1

w

2

2

0

i

i

P

C

)

(

log

max

)

(

log


oleObject3.bin

oleObject4.bin

image7.wmf
)

(

log

)

(

log

max

w

P

2

2

C


oleObject5.bin

image8.wmf
16

1

1

10

5

1

1

C

C

3

3

0

i

i

5

2

=

-

+

+

+

=

-

+

å

=


oleObject6.bin

image9.wmf
8

1

3

5

1

1

C

C

2

3

0

i

i

5

1

=

-

+

+

=

-

+

å

=


oleObject7.bin

image10.wmf
3

1

3

1

1

C

C

1

3

0

0

i

i

5

=

-

+

=

-

+

å

=


oleObject8.bin

image11.wmf
0

1

1

1

C

0

3

=

-

=

-


oleObject9.bin

image12.png
index

weight

2 4 8 16 32
15 31
11 23
13 27
8 9 14 29
16 10 19 30
12 21
17 22
18 25
20 26
1524 28





image13.png
YO

Y1

Y2

Y3

Y4

Y5

D
D

A
U
D
N

[

N

[ah

U
[an [ah
UV U
D [an
N UV
M1 D D D
AU RN N

Bo

Bo




image14.png
BLER

01

—e—0Q-seq+BR
001 | =*¢=Q-Seq+Proposed
—&—New seq+Proposed
—6—0Q-seq+BR
—%—Q-seq+Proposed

—&— New seq+Proposed

0.001

0 05 1 15 2 25 3
SNR





image15.emf
0 0 1 2 4 8 16 32 3 5 6 9 10 64 12 17 128

16 20 33 34 18 24 7 36 65 11 13 19 40 66 14 21 68

32 22 35 48 25 72 129 37 26 130 28 38 132 41 15 67 80

48 42 136 69 23 96 49 44 70 144 73 50 27 131 74 39 52

64 160 29 133 81 76 56 134 30 192 43 82 137 97 84 138 45

80 71 98 145 88 51 140 46 100 146 75 53 104 161 148 54 162

96 112 152 77 57 135 31 193 164 78 83 58 168 194 60 141 85

112 196 139 101 86 142 89 99 147 176 200 208 90 92 102 105 106

128 149 150 153 163 165 47 55 79 108 156 166 113 169 154 116 59

144 170 114 195 61 87 197 172 177 91 62 224 120 198 178 103 143

160 93 201 107 94 151 202 180 109 155 209 115 204 167 110 157 184

176 210 117 171 158 118 173 212 63 225 121 199 179 174 122 226 95

192 203 216 181 124 228 205 182 111 185 211 206 159 232 186 119 213

208 175 188 240 214 123 217 227 125 229 218 126 183 230 207 220 233

224 187 234 241 189 215 236 242 244 190 219 248 231 237 221 222 235

240 127 238 243 191 245 246 249 250 252 223 239 247 251 253 254 255


image1.png
YO

Y1

Y2

Y3

Y4
Y5

Y6

Y7

uo

ul

u2

u3

fan
UV
[an
UV

an

N

[ah

U
[an D
UV €
[an [an
UV UV
Al D [an
WU\ mWI UV

U4
us

ue

u7




image2.emf
1 2 4 8

0 1 3 7

2 5

4 6

weight

index


