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1. Introduction
For NR, Evaluation assumption of TxD scheme for DL control channel uses CCE aggregation levels 1, 2, 4, and 8 [1]. Therefore, blind decoding may be performed considering 2m, 2m+1, 2m+2, 2m+3 (m≤6 for DCI) of Polar code. In this contribution, when considering both information bit allocation sequence and rate matching scheme, we discuss how to reduce memory and latency.

2. Pre-stored sequences 
. The method of storing the information bit allocation sequence can be classified into a method of storing one or more information for each mother code size (pre-stored method) and a method of regeneration for each mother code size by storing one for the maximum mother code size (on-the-fly method). Because the pre-stored method stores the sequence for each mother code size N, the memory reading time requires N clocks and the required memory is as follows. If 2n length reliability sequences with n-bit width of each entry in the sequence is stored in memory for each length of power of 2, the maximum memory required to support 8 ≤ 2n ≤ 512 is about 8Kbits (=4.5Kbits + 2Kbits + 0.875Kbits+… +0.015625Kbts), so the hardware burden can be ignored. 
The single information bit allocation sequence based constructions may have negative impact in terms of latency by additional operations for sequences generation from single memory. The latency occurs by performing sequence regeneration through a comparator according to each mother code size from a single memory. Therefore, memory reading time requires Nmax clocks and required memory is Nmax*log2(Nmax).
Figure 1 and 2 show latency and required memory size of on-the-fly method based on single nested sequence and pre-stored method for each mother code size.
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Figure 1. Example of latency and required memory of on-the-fly method based on single nested sequence
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Figure 2. Example of latency and required memory of pre-stored method for each mother code size.
Table 1 shows latency and required memory for each mother code size under Nmax=512. This table excludes additional operations for selecting entries from a sequence.
Table 1. Comparison of latency and required memory for each mother code size
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The memory of pre-stored method requires about 1.7 times more memory than the memory of on-the-fly method. However, the latency of on-the-fly method becomes larger as N becomes larger than that of pre-stored method, and Nmax / N times is required. Short decoding latency is as important as the BLER performance of the decoder. Because the decoding latency is important in the control channel, it is advantageous to pre-calculate the sequences offline.
Observation 1: The memory of pre-stored method requires about 1.7 times more memory than the memory of on-the-fly method. However, the latency of on-the-fly method becomes larger as N becomes larger than that of pre-stored method, and Nmax / N times is required.
Observation 2: Because the decoding latency is important in the control channel, it is advantageous to pre-calculate the sequences offline.
Proposal 1: Considering CCE aggregation and blind decoding, pre-stored multiple sequences with the smallest latency should be supported.

3. Sequences for information bit allocation and rate matching 
3.1. Required memory size
We can consider following two alternative solutions to reduce memory and latency for information bit length K, code block length M:  
· Alt 1: The same sequence for information bit allocation and rate matching
· Alt 2: Two different sequences for Information bit allocation sequence and rate matching sequence
SLinfo and SLRM denote the sequence length of information bit allocation and the sequence length of rate matching, the memory size for sequence is as follows:
· 
Alt 1: 
· 
Alt 2: 
Parameter i can be determined according to mother code size N. If we use the proposed puncturing with shortening [2] method to reduce memory, the required memory for Alt 2 is as follows:
· 
Alt 2-1: 
 where SLRM_max denote the maximum sequence length of rate matching. Therefore, the required memory size order is Alt 2 > Alt 2-1 > Alt 1, and if more sequences are supported for N, the order can be Alt 2 > Alt 2-1 ≈ Alt 1. 

3.2. Simulation results
We present numerical results using information bit length K(including 19bit-CRC)=120 (red line in figure 3), 160 (blue line in figure 3), code block length M=240, mother code sizes N=256, List size L=8 parameters. CRC polynomials is given by [3]:
.
In this contribution, the BLER performances are evaluated for Q-sequence[4] + bit-reversal(BR) puncturing with shortening, Q-sequence + proposed puncturing with shortening, New sequence + proposed puncturing with shortening, and Q-sequence + Q-sequence for puncturing with shortening. The new sequence is given in the table in Appendix.
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Figure 3. BLER performance of different code sequences and puncturing with shortening schemes
From the simulation results, it can be seen that all schemes have comparable BLER performances.
Observation 3: Q-sequence and proposed puncturing with shortening schemes to Q-sequence and new sequence has comparable BLER performance.
Proposal 2: The same sequence for information bit allocation and rate matching can be considered to reduce required memory size. 
Proposal 3: If different sequences are used, proposed puncturing with shortening scheme can be considered to reduce memory. 

4. Conclusion
In this contribution, we considered information/frozen bit selection of polar code in terms of capacity. Based on the above discussion, we have the following observations and proposal.
Observation 1: The memory of pre-stored method requires about 1.7 times more memory than the memory of on-the-fly method. However, the latency of on-the-fly method becomes larger as N becomes larger than that of pre-stored method, and Nmax / N times is required.
Observation 2: Because the decoding latency is important in the control channel, it is advantageous to pre-calculate the sequences offline.
Observation 3: Q-sequence and proposed puncturing with shortening schemes to Q-sequence and new sequence has comparable BLER performance.
Proposal 1: Considering CCE aggregation and blind decoding, pre-stored multiple sequences with the smallest latency should be supported.
Proposal 2: The same sequence for information bit allocation and rate matching can be considered to reduce required memory size. 
Proposal 3: If different sequences are used, proposed puncturing with shortening scheme can be considered to reduce memory.
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Appendix: An Example of Code Sequence (Low-reliability bit first)
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Latency and required memory Nmax=512

N=256 Multiple Single
Latency (clk) 256 512 (x2)
Memory (bit) 7936 (x1.7) 4608

N=128 Multiple Single
Latency (clk) 128 512 (x4)
Memory (bit) 7936 (x1.7) 4608

N=64 Multiple Single
Latency (clk) 64 512 (x8)
Memory (bit) 7936 (x1.7) 4608
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