
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]3GPP TSG RAN WG1 Meeting #89 	 R1-1707523
Hangzhou, China, 15th - 19th May 2017

Source:	CATT
[bookmark: OLE_LINK14][bookmark: OLE_LINK15]Title:	Performance evaluation of polar codes for eMBB control channel
Agenda Item:	7.1.4.2.1.1
[bookmark: Source][bookmark: DocumentFor]Document for:	Discussion

Introduction
[bookmark: _Hlk477976745]In RAN1 meetings, the following agreements have been reached for eMBB control channel coding [1-2].
Agreement: [#88]
· Until RAN1#88bis, work together on a coding scheme that achieves the benefits of both Alts 1&2
· With J’ bits for the purpose of assisting the Polar decoding, where 0<=J’<=Jmax , aiming for Jmax , e.g. in the region of 8 (other values are not precluded)
· This does not preclude the use of the J bits for assisting decoding
· Note that any PC-frozen bits would be considered to be among the J’ bits
· The following are examples:
J bits CRC + J’ bits CRC + basic Polar;
J bits CRC + J’ bits distributed CRC + basic Polar;
 J bits CRC + J’ PC bits + basic Polar; (i.e. PC-Polar)
 J bits CRC + J’ Hash sequence + basic Polar;
(J + J’) bits CRC + basic Polar
Agreement:[#88bis]
· J CRC bits are provided (which may be used for error detection and may also be used to assist decoding and potentially for early termination)
· J may be different in DL and UL
· J may depend on the payload size in the UL (0 not precluded)
· In addition, J’ assistance bits are provided in reliable locations (which may be used to assist decoding and potentially for early termination)
· J + J’ <= the number of bits required to satisfy the FAR target (nFAR) + 6
· Working assumption:
· For DL, nFAR = 16 (at least for eMBB-related DCI)
· For UL, nFAR = 8 or 16 (at least for eMBB-related UCI; note that this applies for UL cases with CRC)
· J’>0
· Working assumption: J”<=2 additional assistance bits are provided in unreliable locations (which may be used to assist decoding and potentially for early termination)
· Can be revisited in RAN1#89 if significant benefit is shown from a larger value of J” without undue complexity – companies are encouraged to additionally evaluate J”=8
· The J’ (and J” if any) bits may be CRC and/or PC and/or hash bits (downscope if possible)
· Placement of the J, J’ (and J” if any) assistance bits is FFS after the study of early termination techniques
· Appended?
· Distributed?
· evenly?
· unevenly?

In this contribution, we discuss design and performance of hash polar codes for eMBB control channels.
Description of Hash-aided Polar Codes
[bookmark: OLE_LINK17][bookmark: OLE_LINK18]2.1 Encoding scheme

Figure 1: the structure of hash Polar codes

[bookmark: OLE_LINK1] We propose hash Polar codes to improve BLER performance and maintain the false alarm rate of about 2-16 by using the nonlinear characteristic function. The “improved one-at-a-time” hash function h with two inputs and one output is applied with the result of an unsigned integer, which is called hash state. The structure of hash-aided Polar codes is shown in Figure 1. The encoding of hash-aided Polar codes is given as follows:
1). Encode the source vector by CRC encoder.

2). Divide the coded vector into I segments, each of which is a bit-vector of length r, where.

3). Convert the bit-vector in each segment into an integer ().

4). Deliver and as two inputs to the hash function resulting in (from 1 to I successively) with the assumption that.

5). Convert the output of hash encoder into a v-bit vector.
6). Let the v-bit vector attached to the coded vector, and deliver the attached vector to Polar encoder.
2.2 Decoding scheme

[bookmark: OLE_LINK19][bookmark: OLE_LINK20]List with hash-aided Polar decoding is employed. The decoder outputs the most likely decoding path with the smallest path metric among the paths whose hash state equals to the output of the hash encoder. The decoding of hash-aided Polar codes is given as follows:
1) Sort L paths in terms of the reliability from high to low.
2)
Consider the l-th () path successively:
i.
[bookmark: OLE_LINK21][bookmark: OLE_LINK22]Deliver the CRC coded vector from the l-th path to hash encoder resulting in an integer.
ii.
Convert the hash state sequence from the l -th path into an unsigned integer.
iii.

Compare and. If , output the source vector, otherwise choose the source vector of the first path as the output.
The hash function can play a role in the path check in addition to help the selection of the list path. Thus, the false alarm rate can be redefined as
,
[bookmark: OLE_LINK6][bookmark: OLE_LINK7]Where denotes the number of the incorrectly decoding frame number which passes both the hash decoder and CRC check in eMBB control channel, and denotes the number of the incorrectly decoding frame number

2.3 Complexity analysis

The one-at-a-time Hash function is showed in the appendix. The performance of hash polar codes with fixed list size L=8 and variable iteration numbers is shown in Figure 2. We can see that the BLER performance does not change as the number of iteration M increases. From these results, we can set the number of iteration M = 1 to achieve minimal decoding complexity. Only additions, shifts, and XORs operations are required in the hash function which has lower complexity compared with the CRC-aided Polar scheme.
[image:][image:]
Figure 2: Performance of hash Polar with different iterations
2.4 Implementation

Hash Polar codes presented in the aforementioned have the following characteristics:
· The size of v is flexible (v from 1 to 32);
· Only one hash encoder is needed for variable length of hash sequence;
· Only additions, shifts, and XORs operations are required in the hash function.
Observation 1: Hash sequence is flexible in block size and easy to implement.

Evaluation results
In this section, the BLER and false alarm performance of the hash Polar are given for control channel with various information block sizes (K=32, and 200), coding rate (R=1/6, 1/3, 1/2) , and list size L=8,16 and 32. The simulations are conducted over the BI-AWGN channel with QPSK modulations.
· hash Polar
· List size=8 (v=9, CRC-10)
[image:]
Figure 3: Performance of hash Polar and CA Polar, list size=8, K=32
[image:]
[bookmark: OLE_LINK2][bookmark: OLE_LINK5]Figure 4: Performance of hash Polar and CA Polar, list size=8, K=200
· [bookmark: OLE_LINK12][bookmark: OLE_LINK13][bookmark: OLE_LINK10][bookmark: OLE_LINK11]list size=16 (v=9, CRC-11)
[image:]
Figure 5: Performance of hash Polar and CA Polar, list size=16, K=32

[image:]
Figure 6: Performance of hash Polar and CA Polar, list size=16, K=200
· list size=32 (v=9, CRC-12)
[image:]
Figure 7: Performance of hash Polar and CA Polar, list size=32, K=32

[image:]
Figure 8: Performance of hash Polar and CA Polar, list size=32, K=200
As shown in Figures 3-8, we can see that hash Polar codes can achieve comparable or slightly better BLER performance than CA Polar. It is also noted that hash Polar have good false alarm performance.
[image:]
Figure 9: Performance of hash Polar, K=32, R=1/6 and K=80, R=1/3
Figure 9 shows that hash polar codes with different block sizes and coding rates achieve good performance in waterfall region. No error floor and BLER slop degradation can be found at least at BLER=10-6.
[bookmark: _GoBack]Observation 2: Hash Polar codes can achieve good false alarm performance.
Observation 3: Hash Polar codes exhibit good performance in waterfall region.
Observation 4: Hash Polar code can achieve comparable or slightly better BLER performance than that of CA Polar code.
For hash Polar codes, two or multiple hash or CRC sequences are essential. Multiple concatenated sequence based Polar structure can be beneficial for combination of CRC aided and CRC-less Polar schemes. For example, the hash sequence is used for path selection in the original hash Polar proposal. Several survival paths might have passed hash check. These survival paths can be further checked by the J-bit CRC decoder successively to improve the performance. Furthermore, multiple concatenated sequence-based Polar code structure can facilitate the implementation of early termination of list decoding [3]. Hash function is nonlinear function which has the potential to be better in BLER performance than that of linear CRC function.
Observation 5: Multiple concatenated sequence-based Polar code structure can be beneficial for combination of CRC aided and CRC-less Polar schemes.
Observation 6: Multiple concatenated sequence-based Polar structure can facilitate the implementation of early termination of list decoding.
Conclusion
The above discussion is summarized with following observations and proposals:
Observation 1: Hash sequence is flexible in block size and easy to implement.
Observation 2: Hash Polar codes can achieve good false alarm performance.
Observation 3: Hash Polar codes exhibit good performance in waterfall region.
Observation 4: Hash Polar code can achieve comparable or slightly better BLER performance than that of CA Polar code.
Observation 5: Multiple concatenated sequence-based Polar code structure can be beneficial for combination of CRC aided and CRC-less Polar schemes.
Observation 6: Multiple concatenated sequence-based Polar structure can facilitate the implementation of early termination of list decoding.
Proposal 1: Hash Polar coding scheme shall be selected as the coding scheme for NR control channel.
References
[1].	3GPP RAN1#88 chairman notes.
[2].	3GPP RAN1#88bis chairman notes.
[3]. R1- 1707524, “Design of polar codes for early termination”, CATT.

· Appendix
One-at-a-time Hash Function：
unsigned int Hash_function(int a, unsigned int b)
{
	unsigned int hash = b;
	int i;
 	hash = 3321836253 ^ hash;
	for(i = 0; i <M; ++i)
	{
		hash += a;
		hash += (hash << 10);
		hash ^= (hash >> 6);
		a >>= 8;
	}
	hash += (hash << 3);
	hash ^= (hash >> 11);
	hash += (hash << 15);
	return hash;
}

image2.wmf
S

oleObject2.bin

image3.wmf
132

r

££

oleObject3.bin

image4.wmf
i

k

oleObject4.bin

image5.wmf
1

iI

££

oleObject5.bin

oleObject6.bin

image6.wmf
1

i

S

-

oleObject7.bin

image7.wmf
i

S

oleObject8.bin

image8.wmf
i

oleObject9.bin

image9.wmf
0

0

S

=

oleObject10.bin

image10.wmf
I

S

oleObject11.bin

image11.wmf
1

lL

££

oleObject12.bin

oleObject13.bin

image12.wmf
S

%

oleObject14.bin

oleObject15.bin

oleObject16.bin

image13.wmf
SS

=

%

oleObject17.bin

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image1.emf
CRC Encoder

k

1

k

2

k

I

...

hhhh

0S

Polar

Encoder

C

P/S

1S2SIS

...

d

Hash Encoder

oleObject1.bin
�

CRC Encoder

