3GPP TSG RAN WG1 Meeting #89 R1-1707179
Hangzhou, China 15th – 19th May 2017
Agenda Item: 7.1.4.1.2
Source: ZTE
Title: 	 NR LDPC design
Document for: Discussion and Decision

Introduction
At the 3GPP TSG RAN1 #88bis meeting, the following agreement and conclusion have been achieved [1]:
Agreement:
The base graph design is selected from the following alternatives:
Alt 1: One base graph covering ~1/5 <= R <= ~8/9
Alt 1a: Two nested base graphs, where:
· Base graph #1
· Covers info block size K:
	Kmin1 <=K<= Kmax1, Kmin1 > Kmin, Kmax1 =Kmax
· Covers code rate R: ~1/3 <= R <= ~8/9; FFS whether Rmin can be ~1/5
· Base graph #2
· Nested within base graph #1
· Covers info block size K:
	 Kmin2 <=K<= Kmax2, Kmin2 =Kmin, Kmax2 < Kmax, where 512<=Kmax2<=2560
· Covers code rate R: ~1/5 <= R <= ~2/3
· Kbmax =16 is the starting point; lower values in the range 10<=Kbmax<16 are encouraged if feasible.
· The set of supported shift sizes is taken from the set of shift sizes supported by the base graph supporting Kmax
Alt 2: Two base graphs, where:
· Base graph #1
· Covers info block size K:
	Kmin1 <=K<= Kmax1, Kmin1 > Kmin, Kmax1 =Kmax
· Covers code rate R: ~1/3 <= R <= ~8/9; FFS whether Rmin can be ~1/5
· Base graph #2
· Not nested within base graph #1
· Covers info block size K:
	 Kmin2 <=K<= Kmax2, Kmin2 =Kmin, Kmax2 < Kmax, where 512<=Kmax2<=2560
· Covers code rate R: ~1/5 <= R <= ~2/3
· Kbmax = 10 is the starting point; higher values in the range 10<Kbmax<=16 can also be considered if necessary.
· The set of supported shift sizes is taken from the set of shift sizes supported by the base graph supporting Kmax
BLER Performance is the main criterion for selecting between Alts 1, 1a and 2 (since it is already assumed that complexity is not increased significantly by the addition of a second smaller base graph); decoding latency (e.g. evaluated by the number of edges) should also be considered as an important criterion.
In this contribution, some further considerations for LDPC codes design are presented with focus on uniform LDPC base matrix design.
Low Density Parity Check (LDPC) Codes
A LDPC code is defined by a sparse parity check matrix, which can be mapped to a bipartite / tanner graph composed of check nodes and variable nodes, as shown in Figure 1.

[bookmark: _Ref446942287]Figure 1 Tanner Graph for LDPC Codes
[bookmark: _Toc170195237][bookmark: _Toc170195507][bookmark: _Toc170195776][bookmark: _Toc170196045][bookmark: _Toc170196315][bookmark: _Toc170196585][bookmark: _Toc170196855][bookmark: _Toc170197125][bookmark: _Toc170197573][bookmark: _Toc170197899][bookmark: _Toc170198452]Basic description of QC-LDPC Codes

The parity check matrix of structured LDPC Codes is defined by a matrix H of size, which consists of blocks of circularly shifted identity matrices or zero matrices of size, of the form as following:

If integer, define; if integer, defineand P is a standard permutation matrix of the form:

The size of H is, here. And of size has the form:

There are several basic definitions and concepts for structured LDPC codes. H is the expand matrix of, and is the base parity check matrix (or base matrix) of H, and z is the lift size (or expand factor). As we can see, the information block size K = N-M and N is the codeword block size. Through changing the lift size (expand factor) z, a LDPC set of variable information length and certain code rate can be obtained. Therefore, a base matrix Hb and an lift size (expand factor) z together can be used to represent H.
Decode algorithm for evaluation of LDPC codes
Log-BP algorithm with LUT
The message passing algorithm is a decoding technique in which messages are passed from node to node through the Tanner graph. The nodes act as independent processes, collecting incoming messages and producing outgoing messages. There is no global control over the timing or the content of the messages; instead, the bit and check nodes follow a common local rule: send a message as soon as all necessary incoming messages have been received. When the graph is cycle-free, the message passing algorithm is a recursive algorithm that always converges to the true a posteriori log-likelihood ratios after a finite number of messages have been passed. However, most (if not all) “good” codes have cycles in their Tanner graphs. When applied to codes with cycles, the message passing algorithm is no longer exact but approximate. Fortunately, even when the graph has cycles, the message passing algorithm performs remarkably well, and its complexity is extremely low.

The message-passing decoder for an irregular or regular LDPC code can be summarized concisely in terms of the index sets and, as follows.

Let denote an “upward” message form check-node to bit-node n during the l-th iteration, and let denote an estimate of the n-th LLR after iterations. The message passing decoder is:
Pseudo-code Description of Log-Domain Decoding Algorithm
	1) Initialization

The variables and are initialized to

* , for all and

 * , for all

	2) Parity node updates----(Row Information update, look up table)

Where

		

	3) Bit node updates--------(Column Information update)

	4) Verify parity checks

	5) Iteration termination
·

Where we have defined

and used the fact that . The function is fairly well behaved; it may be implemented via look-up table. When finite precision has been considered, 32 bit entries LUT is enough for LUT Log-BP.
MIN* Log-BP or Box-Plus Log-BP
In another approach [4], the check node update can be computed in pairs of incoming messages in recursive form, e.g. Umn= g (xn−1, g (xn−2, . . . , g(x2, x1))). It is based on the fact that for two random variables U and V, with LLR values L(U) and L(V), The function of Eq. (4) is usually referred to as box-plus operator, i.e.[image:]
Consideration on NR LDPC design
 Down-selection of LDPC candidates for eMBB
For NR eMBB，because all designs are the base graph of Kbmax =22, the complexity and throughput difference of various companies are very slight. Therefore, it is suggested that only performance is used for down selection.
Proposal 1: The down-selection of eMBB LDPC candidates should be mainly based on performance.
For NR eMBB, the mother code rate at the maximum code size will affect the memory size, meanwhile the memory size will affect chip area and soft buffer size obviously. Therefore, it is preferred that the lowest mother code rate is 1/3 instead of 1/5 when information block size = Kmax.
Proposal 2: the lowest mother code is 1/3 instead of 1/5 when information block size = Kmax.
The size of parity check base matrix and compact base graph concept
According to several contributions in the previous meeting, we prefer that kbmax≤26 and Zmax≥320 and
the matrix with small kbmax (e.g. 6, 8, 10, 12, 16, 20), which can support a compact structure. Fortunately, RAN1 has agreed that Kbmax=22 and Zmax = 384 which can comply with our preference very well.
Meanwhile, many companies have the interests to support two base graphs, one is used for large CBS larger than 2K and another more compact basegraph is used for small CBS lower than 2K. Furthermore, Kbmax=22 is used for the first one, and Kbmax=10~16 is used for the second one.
According to LTE TBS table in TS36.213, it is observed that high code rate between 0.66 and 0.93 also have to be supported for small CBS of several hundreds to 2K at a few top MCS levels. Furthermore, for LTE 64QAM TBS tables, LTE downlink 256QAM TBS tables and LTE uplink 256QAM TBS tables, the above observation can be found. Since it is expected that NR eMBB will cover a similar scenario as LTE, we believe NR TBS table design could maintain the same philosophy as LTE. Therefore, we also should consider the performance at small CBS and high code rate, but the importance of such case is lower than the performance at small CBS and low code rate due to concurrency.
Observation 1: it is observed that high code rate between 0.66 and 0.93 also have to be supported for small CBS of several hundred bits to 2K bits at a few top MCS levels for LTE.
Proposal 3: It is preferred that the performance of LDPC codes at small CBS and high code rate should be considered but the importance is lower than that at small CBS and low code rate.
According to our experience to design compact matrices, compared with none-compact matrix with Kbmax=32, we have found that very compact matrix with Kbmax<=10 has at least 0.1 dB performance loss for rate 2/3 and at least 0.2dB performance loss for rate 3/4~8/9 at BLER=0.01. However, it is found that normal compact matrix with Kbmax=16 has comparable performance to none-compact matrix for all code sizes and all code rates. Therefore, if two base graphs are considered by RAN1, it is reasonable that Kbmax=16 instead of Kbmax =10 is selected for the small base graph.
Proposal 4: Kbmax=16 instead of Kbmax =10 should be selected for the small base graph when two base graphs are studied.
Number of base graph
It is preferred that single base graph is used for NR LDPC. The reason is shown as follows: 1) single base graph has comparable performance to two base graphs. 2) single base graph is simple and unified. 3) single base graph is suitable for row parallel decoder because multiple matrices lead to complex connections between CNU pins and LLR memory banks. 4) single base graph needs less ROM for storage. 5) two base graphs cannot bring extra benefit of power consumption. For the detail of the first reason, at least three companies have shown us enough good performance at small CBS with Kbmax=32 base graph or Kbmax=16 base graph.
Proposal 5: It is preferred that single LDPC base graph is defined for NR eMBB.
In the previous meeting, the base graph design is selected from Alt.1, Alt.1a or Alt.2. Actually Alt.1a is a special case of Alt.1 since shortening based on single base graph can be equal to two nested base graphs. Therefore, our preference to Alt.1 also includes the function of Alt.1a.
Observation 2: For the selection of base graph, Alt.1a can be regarded as since shortening based on single base graph can be equal to two nested base graphs.
Uniform Base Matrix

To generate a LDPC code set of a certain range of code rate and code size, a uniform base matrix with the lowest code rate in the range is defined. A sub-base matrix of corresponding number of rows and columns is extracted from the uniform base matrix to support different code rates in the range. The lift size can be variable to support different code block sizes. An example for code rates of Ri and Rj is shown in Figure 2. An example of different lift size (expand factor) , namely Zs and Zt , is also shown in Figure 2.

Figure 2 Uniform Base Matrix for different Code Rates (Rj<Ri) and different Code Block Sizes (Zs<Zt)

In order to obtain the base matrix of specific code size, the uniform base matrix has to be modified to generate a modified base matrix, which will really be used as parity check base matrix in the encoder/decoder of the LDPC code of specific code size. That is to say, for the LDPC codes of different code sizes and the same code rate, the positions of non-negative-one elements of their base matrices is the same, and the values of non-negative-one elements of their base matrices need to be changed.

For each non-negative-one elements of the uniform base matrix above, the value should be modified. Let represents the i-th row, j-th column element of modified base matrix, represents the i-th row, j-th column element of the uniform base matrixgiven by us. Then

Eg.

is the largest lift size(expand factor), and z is the currently used lift size uniquely corresponding to the currently used code size. denotes the operation that rounds the elements in it to the nearest integers towards minus infinity. The selection of the aforementioned function can be based on performance, how many binary bits to indicate the modified base graph Hbm, the calculation complexity etc.
Proposal 6: It is preferred that uniform base graph design should be considered for flexibility.
· Single and uniform base graph(s) Hb is defined for all code rates and all code sizes.
· modified base graph Hbm for lift size z1 is derived from the corresponding uniform base graph and its predefined z0 by using function f as:
· Hbm (i,j) = f(Hb (i,j),z1,z0)
· E.g., f = flooring, modulo, offset, combination
· The selection of f is based on performance, how many binary bits to indicate the modified base graph Hbm, the calculation complexity etc
· Parity-check matrix(s) for z1 is derived from the corresponding modified base graph(s) by using lifting
· H= g(Hbm,z1) where g = lifting ;
· Shortening and puncturing are used for providing various code rates and code sizes
The first element in each column of Base Matrix
In the LDPC decoder, each element (non -1) in the base matrix corresponds to a cyclic shift. The value of element equals ‘0’, which means that there is no need for cyclic shift. For any column in base matrix, if the first non -1 element of each column is equal to ‘0’, information bits in the original order can be derived when the first two rows are updated, which means that code block CRC can be used to terminate decoding and correct information block can be derived once CRC check can pass.
Firstly, this assumption will not affect performance and be suitable for any design of any company. Secondly, this assumption can avoid using inverse cycle shift network which means that half complexity of cycle shift network can reduced. Finally, this idea has appeared for array LDPC about ten years ago.
Proposal 7: It is preferred that the first non-negative-one element in each column is zero for base parity check matrix since inverse cycle shift network can be avoided and the complexity of cycle shift network can be reduced to half.
Uniform LDPC Design
LDPC Base Matrix of uniform base graph
According to the design considerations described above, a uniform base graph for eMBB is defined for all code rates and all code sizes as follows with kbmax = 22 and Zmax = 384. The parameters of this uniform base graph are: nb=68, mb=46, kb=22.
Four base matrices based on the same and single base graph are described in the attachment. The base matrix A is used for information block size less than 400, base matrix B is used for information block size of [400 : 1024) , base matrix C is used for for information block size of [1024 : 2048), and base matrix D is used for information block size of [2048 : 8448]. For base matrix A, Zmax=18, “scale + floor” is used for different code sizes in the corresponding range; For base matrix B, Zmax=48, “scale + floor” is used for different code sizes in the corresponding range; For base matrix C, Zmax=96, “scale + floor” is used for different code sizes in the corresponding range; For base matrix D, Zmax=384, “scale + floor” is used for different code sizes in the corresponding range.

Lift size for the above base matrix:
Zset = [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22 24 26 28 30 32 36 40 44 48 52 56 60 64 72 80 88 96 104 112 120 128 144 160 176 192 208 224 240 256 288 320 352 384]
LDPC Encoding Process
There are three steps to encode an information block of size K bits into a codeword block of size N bits. In detail, Step 1: Choosing corresponding life size and modified base matrix; Step 2: LDPC encoding; Step 3: bit selection. Note that, if the size of information bits K is larger than Kmax=8448, code block segmentation is required to divide one TB into multiple code blocks.
Choosing life size and modified base matrix

For information size of K bits, the coding expanding factor Z is chosen to be the first element in Z set larger or equal to , wherein . Then the elements of coding base matrix are modified by coding expanding factor Z as the following:

 LDPC Encoding

padding bits are attached at the end of information block. bits information block is encoded into codeword of bits using the modified base matrix and lift size Z calculated above.
Bit Selection
Permutation is used to reorder the codeword bits in the predefined order. This operation can make suitable puncturing bits be selected to attain the best performance. The permutation vector is defined as follows:PV=[2~nb , 0, 1], wherein nb=68 for Rmin=1/3 for Kmax and nb=112 for Rmin=1/5 for Kmax.

, k=0, 1, …, nb*Z-1, where is the original sequence and is the shifted sequence. Bit selection is performed as the following to obtain codeword.

wherein “null” denotes padding bit. The process of LDPC encoding and bit selection for the above base matrix has been illustrated in Figure 3.

Figure 3 the process of LDPC encoding and bit selection
Truncated Matrix for decoder in LDPC Decoding Process
In order to implement more efficient decoding, a part of matrix instead of the whole base matrix is used for decoding. If K and N is given, the part of the previous kb’ rows and the previous nb’ columns of Hbm is truncated for decoding, which can be depicted by Figure 4. Furthermore, kb’ and nb’ can be calculated by the following formula:
For truncated base matrix:

the number of rows：

the number of columns：.

Figure 4 Truncated matrix from Hbm for decoder
Conclusion
In this contribution, some considerations of LDPC coding schemes for the new RAT are presented. In summary, we have the following proposals and observations:
Observation 1: It is observed that high code rate between 0.66 and 0.93 also have to be supported for small CBS of several hundred bits to 2K bits at a few top MCS levels for LTE.
Observation 2: For the selection of base graph, category 1a can be regarded as a special case of category 1 since shortening based on single base graph can be equal to two nested base graphs.
Proposal 1: The down-selection of eMBB LDPC candidates should be mainly based on performance.
Proposal 2: The lowest mother code is 1/3 instead of 1/5 when information block size = Kmax.
Proposal 3: It is preferred that the performance of LDPC codes at small CBS and high code rate should be considered but the importance is lower than that at small CBS and low code rate.
Proposal 4: Kbmax=16 instead of Kbmax =10 should be selected for the small base graph when two base graphs are studied.
Proposal 5: It is preferred that single LDPC base graph is defined for NR eMBB.
Proposal 6: It is preferred that uniform base graph design should be considered for flexibility.
· Single and uniform base graph(s) Hb is defined for all code rates and all code sizes.
· modified base graph Hbm for lift size z1 is derived from the corresponding uniform base graph and its predefined z0 by using function f as:
· Hbm (i,j) = f(Hb (i,j),z1,z0)
· E.g., f = flooring, modulo, offset, combination
· The selection of f is based on performance, how many binary bits to indicate the modified base graph Hbm, the calculation complexity etc
· Parity-check matrix(s) for z1 is derived from the corresponding modified base graph(s) by using lifting
· H= g(Hbm,z1) where g = lifting ;
· Shortening and puncturing are used for providing various code rates and code sizes
Proposal 7: It is preferred that the first non-negative-one element in each column is zero for base parity check matrix since inverse cycle shift network can be avoided and the complexity of cycle shift network can be reduced to half.
References
[1]. 3GPP Draft Report of 3GPP TSG RAN WG1 #88bis V0.1.0
[2]. 3GPP R1-1701598 Further consideration on flexibility of LDPC codes for NR 88#
[3]. 3GPP R1-166413 Consideration on channel coding, RAN1 86#
[4]. "Approximate-Min* constraint node updating for LDPC code decoding," in Proc. of IEEE Military Communications Conference, Oct. 2003, pp. 157-162, Christopher Jones

1
image2.wmf
)

(

)

(

z

n

z

m

b

b

´

´

´

oleObject48.bin

image46.wmf
ë

û

oleObject49.bin

image47.wmf
'

Z

oleObject50.bin

image48.wmf
'

ZKkb

=

éù

êú

oleObject51.bin

image49.wmf
mod

max

1()1

()

()

b

ijuniform

b

ijified

b

ijuniform

ifh

h

hZZelse

ì

-==-

ï

=

í

êú

´

ï

ëû

î

oleObject52.bin

image50.wmf
ZkbK

´-

oleObject2.bin

oleObject53.bin

image51.wmf
Zkb

´

oleObject54.bin

image52.wmf
Znb

´

oleObject55.bin

image53.wmf
((/)mod(,))

k

PVkZZkZ

´+

êú

ëû

=

BA

oleObject56.bin

image54.wmf
A

oleObject57.bin

image55.wmf
B

image3.wmf
z

z

´

oleObject58.bin

image56.wmf
C

oleObject59.bin

image57.wmf
mod(,)

mod(,)

0;0;

()

1

1;

snbZ

ksnbZ

ks

whilekN

ifnull

kk

end

ss

end

´

´

==

<

¹

=

=+

=+

B

CB

oleObject60.bin

image58.emf
Information Bits

0

K Bits

Padding

LDPC Encoding

Bit Selection

Transmitted Codeword

K

N

Permutation

0Parity Bits

Padding Bits

kb×Z

nb×Z

Before

Permutation

After

Permutation

0123456

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

3

1

3

2

3

3

3

4

3

5

3

6

3

7

3

8

3

9

4

0

4

1

012345678

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

3

1

3

2

3

3

3

4

3

5

3

6

3

7

3

8

3

9

4

0

4

1

oleObject61.bin
�

�

Information Bits

0

K Bits

Padding

LDPC Encoding

Bit Selection

Transmitted Codeword

K

N

Permutation

0

Parity Bits

Padding Bits

kb×Z

nb×Z

Before Permutation

After Permutation

0

1

2

3

4

5

6

27

28

29

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

30

31

32

33

34

35

36

37

38

39

40

41

0

1

2

3

4

5

6

7

8

19

20

21

22

23

24

25

26

image59.wmf
4()24

'()2()24

ifNKZ

mbNKZelseifmbNKZ

mbelse

ì-+£

éù

êú

ï

=-+³-+>

éùéù

í

êúêú

ï

î

oleObject62.bin

image60.wmf
''

nbkbmb

=+

oleObject3.bin

oleObject63.bin

image61.emf
kbmb

nb

mb

0100001000011000

R

j

Z

t

mb’

kbmb’

nb’

oleObject64.bin
�

�

kb

mb

nb

mb

nb’

Rj

Zt

mb’

kb

mb’

image4.wmf
b

b

b

n

b

m

b

b

m

b

b

m

b

b

m

b

b

n

b

b

b

b

b

n

b

b

b

H

h

h

h

h

h

h

h

h

h

h

h

h

P

P

P

P

P

P

P

P

P

P

P

P

P

H

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

L

L

L

L

L

L

L

L

2

1

0

1

12

11

10

0

02

01

00

oleObject4.bin

image5.wmf
1

-

=

b

ij

h

oleObject5.bin

image6.wmf
0

=

b

ij

h

P

oleObject6.bin

image7.wmf
1

b

ij

h

¹-

oleObject7.bin

image8.wmf
b

ij

b

ij

h

h

P

P

)

(

=

oleObject8.bin

image9.wmf
z

z

´

oleObject9.bin

image10.wmf
ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

0

0

0

1

1

0

0

0

0

1

0

0

0

0

1

0

L

L

L

L

L

L

L

L

L

P

oleObject10.bin

image11.wmf
N

M

´

oleObject11.bin

image12.wmf
z

m

M

z

n

N

b

b

´

=

´

=

,

oleObject12.bin

image13.wmf
b

H

oleObject13.bin

image14.wmf
b

b

n

m

´

oleObject14.bin

image15.wmf
0001020

1011121

012

b

b

bbbbb

bbbb

n

bbbb

n

b

bbbb

mmmmn

hhhh

hhhh

H

hhhh

éù

êú

êú

=

êú

êú

êú

ëû

L

L

LLLLL

L

oleObject15.bin

oleObject16.bin

oleObject17.bin

image16.wmf
,

{:1}

nmn

MmH

==

oleObject18.bin

image17.wmf
,

{:1}

mmn

NnH

==

oleObject19.bin

image18.wmf
()

,

l

mn

u

oleObject20.bin

image19.wmf
()

l

n

l

oleObject21.bin

image20.wmf
l

oleObject22.bin

image21.wmf
n

l

oleObject23.bin

image22.wmf
mn

u

oleObject24.bin

image23.wmf
0

,

0

mn

u

=

oleObject25.bin

image24.wmf
{1,,}

mM

Î

L

oleObject26.bin

image25.wmf
m

nN

Î

oleObject27.bin

image26.wmf
(0)2

(2/)

nn

r

ls

=

oleObject28.bin

image27.wmf
{1,,}

nN

Î

L

oleObject29.bin

image28.wmf
()

''

'()\

'()\

0,...,1

()

()(())

k

mnmnmn

nNMn

nNMn

formM

fornNm

u

ab

Î

Î

=-

Î

ìü

=-FF

íý

îþ

å

Õ

oleObject30.bin

image29.wmf
(1)(1)(1)

'

(1)(1)(1)

'

(1)(0)(1)

'

'()

()()

||||

kkk

mnnmnmn

kkk

mnnmnmn

kk

nnmn

nNm

signusignv

uv

u

al

bl

ll

--

Î

=-+=-

=-=

=+

å

oleObject31.bin

image30.wmf
()(0)()

'

'()

0,...,1

kk

nnmn

mMn

fornN

u

ll

Î

=-

ìü

=+

íý

îþ

å

oleObject32.bin

image31.wmf
0,...,1

ˆ

(0)0

ˆ

1

nn

n

fornN

ifx

elsex

l

=-

>=

=

oleObject33.bin

image32.wmf
max

ˆ

(0)()

2)

T

ifHxorllquit

elsegoto

==

oleObject34.bin

image33.wmf
1

()log(tanh(/2))log

1

x

x

e

xx

e

+

F=-=

-

oleObject35.bin

image34.wmf
1

()()

xx

-

F=F

oleObject36.bin

image35.wmf
()

x

F

oleObject37.bin

image1.emf
0

2

1

3

Variable Nodes

Check Nodes

2

4

3

501

1

0

1

0

0

1

0

1

0

1

1

0

1

0

0

1

1

0

1

0

0

1

0

1

H =

image36.png

image37.wmf
uniform

b

H

oleObject38.bin

image38.emf
kbmb

nb

mb

01000010000110000100001000011000

R

i

R

j

Z

s

Z

t

kbmb

i

mb

i

mb

j

kbmb

j

oleObject39.bin
�

�

kb

mb

nb

mb

Ri

Rj

Zs

Zt

kb

mbi

mbi

mbj

kb

mbj

image39.wmf
mod

ified

b

H

oleObject40.bin

image40.wmf
b

ij

h

oleObject41.bin

image41.wmf
ified

b

ij

h

mod

）

（

oleObject1.bin

oleObject42.bin

oleObject43.bin

image42.wmf
uniform

b

ij

h

)

(

oleObject44.bin

oleObject45.bin

image43.wmf
(

)

mod

()(),

bb

ijifiedijuniform

hfunctionhz

=

oleObject46.bin

image44.wmf
mod

max

()()

bb

ijifiedijuniform

z

hh

z

êú

=´

êú

ëû

oleObject47.bin

image45.wmf
max

z

