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Introduction
In R1-88 meeting, there was a conclusion relating to the evaluation of performance.
Conclusion:
· Minimum set of information block sizes granularity for evaluation at BLER 1e-2 and 1e-4:
	 
	528<=K<=1024Ȑ 
	1056<=K<=2048i 
	2048<=K<=6144
	6144<=K<=8192

	8
	16
	32
	64
	128


· Some off-grid values of K shall also be evaluated. 
· Minimum information block size for evaluation = 40

In R1-88 meeting, there was another conclusion relating to the evaluation of implementation complexity. 
Conclusion for some code design targets:
· At least support 20Gbps decoder information throughput with code rate 8/9
· Also aim for good throughput performance at lower code rate(s)
· FFS the details of how to assess throughput performance at lower code rates, including whether the assessment is relative or absolute, and other constraints (e.g. complexity)

In this contribution, throughput of several proposed QC-LDPC code and logical area overhead of different decoder architecture are compared. The throughput analysis is based on the practical pipeline scheduling which accurately counts every cycle needed including idle cycles.
Block Parallel Decoder
A single core block parallel decoder (single core decoder) of a QC-LDPC code uses shift size as the degree of parallelism. In [6], we illustrated how parallelism affects the implementation complexity. For example, consider a single-core decoder with a maximum shift size of Z and another single-core decoder with a maximum shift size of Z/2 that achieves the same throughput as the decoder with the shift size Z.  To achieve the same throughput, the decoder with shift size Z/2 would have to be duplicated, as shown in Figure 1, which results in approximately the same logic area footprint between the two decoders. However, the memory area footprint for the decoder with shift size Z/2 has to be doubled
A single-core decoder utilizes the inherent parallelism with a large shift size and is no doubt the most hardware friendly architecture. From past product experience, unless throughput or performance requirement cannot be reached, a block parallel decoder with fewer cores is preferred. 
Observation 1: Single-core decoders are the most hardware friendly architecture and are preferred unless throughput or performance requirements cannot be reached. 
One counter-argument to observation 1is that design effort is not the key factor for standardization and multi-core block parallel decoder can still reach the same parallelism. Therefore, we will start from section 2.1 and section 2.2 to discuss about throughput of single-core decoders and dual-core decoders. This discussion is based on the alignment of logic area efficiency. In section 2.3 and section 2.4, we would put aside the characteristic of “hardware friendly design” and “alignment of logic area efficiency “ and directly discuss about the hardware overhead and throughput of a single-core decoder with the shift size of 512 and a dual-core decoder with the shift size of 256 based on the practical pipeline scheduling. This discussion is based on the alignment of logic area. We observed that decoders with more cores result in a larger number of idle cycles. This implies that decoders with fewer cores are preferred.
Observation 2: Comparison among decoders with the same number of cores is based on the alignment of logic area efficiency. (Throughput is considered as normalization term.)
Observation 3: Comparison between the single-core decoder with and the dual-core decoder with  is based on the alignment of logic area.



[bookmark: _Ref473708440]Figure 1: Illustration of the advantage of larger parallelism
[bookmark: _Ref478023214]Single-Core Block Parallel Decoders
Firstly, we assume that there is no idle cycle overhead and the throughput comparison is equivalent to the comparison of number of edge blocks as listed in Table 1. As observed from the table, the QC-LDPC code proposed by Mediatek in [1] has the smallest number of edge blocks and therefore should scale to have the highest throughput.
[bookmark: _Ref473709734]Table 1: Number of edge blocks
	 # of edge blocks e’
	[1]
wi qRO
	[2]
	[3]
High Family
	[4]
Base graph 1
	[5]
BC1

	CR=1/3
	223
	468
	436
	509
	525

	CR=1/2
	144
	312
	286
	335
	348

	CR=2/3
	101
	211
	193
	221
	233

	CR=8/9
	57
	113
	110
	121
	113



Secondly, considering the practical hardware implementation, there will be some idle cycles in the pipeline scheduling when switching from one layer to the other due to the dependency between layers. In the analysis, we assume layered scheduling with the following considerations to compare the throughput among different QC-LDPC designs.
1. The pipeline stages are listed as following 
a. LLR read
b. Barrel Shifter
c. Q calculation
d. Q compare
e. LLR update
f. LLR write
2. The variable node (VN) dependency between layers needs to be considered, i.e., when some VNs are not updated into the memory in the previous layer, the corresponding LLRs cannot be accessed in the current layer. 
3. The process of CNs follows the top-down order of the base matrix.

An example of the pipeline scheduling for a single-core block parallel decoder targeting the base matrix of Figure 2 is illustrated in Figure 3. The time slots that are labeled with the same color corresponds to the same layer and the value inside the slot is the VN index being processed. The green colored slots correspond to the first row and the cyan colored slots correspond to the second row and so on. The grey colored slots with value -1 denote idle cycles.

[image: ]
[bookmark: _Ref477833357]Figure 2: Example of basematrix
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[bookmark: _Ref477805635]Figure 3: Single core schedule of the basematrix in Figure 2

Based on this scheduling principle, we can compare the number of cycles required for different QC-LDPC designs under different code rates. In Figure 4, we show the number of cycles of different QC-LDPC proposals, of which the y-axis represents the number of cycles required per iteration and the x-axis is the code rates. As observed from the figure, a large shift size of 512 can benefit from the inherent parallelism. The other observation is that even with the same shift size, different proposals may have different cycle requirements, illustrated by the code proposed in [2] having better cycle count than the other codes which have the same shift size of 256. 


[image: ]
[bookmark: _Ref477805754]Figure 4: Cycle requirement comparison based on single core decoder

Given the clock frequency and the average number of iterations of the decoder, the cycle requirement per iteration can be scaled to the throughput. We assume that the clock frequency is 1 GHz and the average number of iterations is 8. Based on this assumption, the throughputs of different proposals are shown in Figure 5. As observed from Figure 5, the throughput of the decoder for the proposed QC-LDPC code is almost twice than those of other proposals. In this case, logic area efficiency is aligned and the memory efficiency of the decoder for the larger shift size is much better.
Observation 4: The throughput of the decoder for the Mediatek proposed QC-LDPC code is almost twice that of other proposals with smaller shift sizes. In this case, logic area efficiency is well aligned and the memory efficiency of the decoder for the larger shift size is much better.


[image: ]
[bookmark: _Ref477806870]Figure 5: Throughput comparisoin based on single core decoder
[bookmark: _Ref478023219]Dual Core Block Parallel Decoder
A decoder may be designed with several hardware engines to process several edge blocks within one clock cycle. We term this decoder architecture a multi-core block parallel decoder. However, this architecture does not exactly scale with the parallelism gain that it instantiates because of memory contention problems causing additional cycles as well as the additional cycles required for the final stage of Q comparison. It is entirely possible to add some additional logic overhead to reduce the extra cycle overhead; however, it is not possible to completely eliminate this cycle overhead.
First, we assume that there is no overhead of additional idle cycles for a dual-core block parallel decoder. This is definitely an incorrect assumption but it can still help set up the initial comparison. With this assumption, we can directly compare the normalized number of edge blocks as a measure of their relative implementation complexity. In Table 2, all the number of edge blocks are normalized to a lifting factor of 512. As observed from the table, even based on the incorrect assumption of zero overhead of idle cycles, the qRO QC-LDPC code proposed by Mediatek in [1] still has larger throughput than those of [2], [3], [4] and [5]. 
[bookmark: _Ref473748824]Table 2: Number of normalized edge blocks
	 # of normalized edge blocks
	[1]
wi qRO
	[2]
	[3]
High Family
	[4]
Base graph 1
	[5]
BC1

	CR=1/3
	222
	234.0
	232.5
	254.5
	262.5

	CR=1/2
	146
	156.0
	152.5
	167.5
	174.0

	CR=2/3
	101
	105.5
	102.9
	110.5
	116.5

	CR=8/9
	56
	56.5
	58.7
	60.5
	56.5




Secondly, considering the hardware implementation, except for idle cycles when switching layer to layer, there will be some idle cycles resulting from memory access conflicts. Since the relationship between CN and VN is quite random, without loss of generality, it is assumed that even VNs are allocated in one memory bank and odd VNs are allocated in the other memory banks. This means at any instance only one address can be read out among even VNs and likewise with the odd VNs. Some may argue that more memory banks can be utilized to resolve the memory access conflicts. But the point is that under the same amount of memory storage, the larger number of memory banks the larger the memory area we will have. In Table 3, we can observe that the memory area doesn’t scale linearly with the memory address number.  Comparing the two with address number 50 and 100, the memory efficiency overhead of the one with address number 50 can be calculated as. It is not a good strategy for a decoder architecture to have excessive memory partitioning.
Observation 5: The larger number of memory banks the larger memory area we will have. It is not a good strategy for a decoder architecture to have excessive memory partitioning.
[bookmark: _Ref477952869]Table 3: Relationship between address number and area
	Memory Address Number
	Word length (bits)
	Memory area

	21
	128
	2247

	50
	128
	2637

	100
	128
	3223

	200
	128
	4395



In addition one more pipeline stage of final Q compare is needed to combine outputs from two cores for a dual-core decoder.  It is possible that the combining can be done in the same cycle of the Q compare. However, the hardware engine of the Q compare is already very timing critical. Increasing the depth of the combinational logical path would result in clock frequency degradation on the level of 28% @ 28HPM based on the synthesis result before P&R (Place and Route). Note that P&R would potentially result in worse frequency degradation. Therefore, we assume that one more pipeline stage is required for the final Q compare to keep the same clock frequency for a fair comparison. 
Observation 6: The extra final Q compare to combine outputs from two cores results in one extra pipeline stage. Otherwise, the clock frequency would degrade by 28% based on the synthesis result.
Occasionally, the extra cycle of the final Q compare is not required, because some layers might be processed by only one core. In addition, when there are MUXs between LLR memory banks and barrel shifters, we can also remove the extra cycle of the final Q compare. In Figure 6, the values on the row labelled by “final Q compare” are the layer indices. We may observe that there is no final Q compare required for the layers of light blue (layer 40) and yellow (layer 42). The corresponding LLR memory switch happens in the cycle of 238 and 243, marked by a blue outline.

In the dual-core scheduling analysis, we assume the layer scheduling with following considerations to compare the throughput among different proposals.
1. The pipelined stages are listed as following 
a. LLR read
b. Barrel Shifter
c. Q calculation
d. Q compare
e. Final Q Compare
f. LLR update
g. LLR write
2. The variable node (VN) dependency relationship between layers needs to be considered, i.e., when some VNs are not updated into the memory in the previous layer, the corresponding LLRs cannot be accessed in the current layer. 
3. The process of CNs follows the top-down order of the base matrix.
4. There are MUXs between LLR memory banks and barrel shifters and the extra cycle of final Q compare may be removed.
5. Two memory banks are assumed. VNs with even indices will be put in one memory bank and VNs with odd indices will be put in the other.
Based on this scheduling principle, we can compare the numbers of cycles required for different QC-LDPC designs under different code rates. An example of pipeline scheduling for a dual-core block parallel decoder is illustrated in Figure 6.
[image: ]
[bookmark: _Ref477867192]Figure 6: Dual core schedule
In Figure 7, we first compare the cycle overhead of the dual-core decoder as compared to that of the single-code decoder. The overhead is defined as. From Figure 7, the overhead ranges from 20% to 60% and cannot be ignored.
Observation 7: The cycle overhead of the dual-core decoder as compared to that of the single-core decoder ranges from 20% to 60% and thus cannot be ignored.
[image: ]
[bookmark: _Ref478033082]Figure 7: Overhead of dual core over single core decoder
In Figure 8, the y-axis represents the cycle requirement of an iteration and the x-axis represents CRs. Different curves in Figure 8 correspond to different proposals. The cycle per iteration can be scaled to the throughput with an assumption on clock frequency and an average number of iterations. We assume that the clock frequency is 1 GHz and the average number of iterations is 8. Based on this assumption, the throughputs of different proposals are shown in Figure 9. 
[image: ]
[bookmark: _Ref477835883]Figure 8: Cycle requirement comparison based on dual core decoder

[image: ]
[bookmark: _Ref477835927]Figure 9: Throughput comparisoin based on dual core decoder
The throughput of the decoder for the proposed QC-LDPC code is almost twice that of other proposals.  In this case, logic area efficiency is well aligned and the memory efficiency of the decoder for large shift size of 512 is much better.
Observation 8: The throughput of the decoder for the Mediatek proposed QC-LDPC code is almost twice that of other proposals. In this case, logic area efficiency is well aligned and the memory efficiency of the decoder for the larger shift size is much better.
[bookmark: _Ref478023468]Logic Area Overhead of Single Core and Dual Core Decoder
Some t-doc contributions have discussed about the logic area overhead of larger shift size. Here we discuss the shift network implemented as a QSN switch. The complexity of a QSN switch with length  counted as the equivalent number of MUX2 elements is. Therefore, considering most mainstream design of  and, the numbers are 3841 and 8705, respectively for  and. Considering the two cores of shifter network, the complexity overhead of  over is 1023 MUX2 elements.
Observation 9: Considering a shift network based on a QSN switch, the logic area overhead of  comparing with   is 1023 MUX2 elements.
For the dual-core block parallel decoder, some logic area overhead is required for the final Q compare to combine the result from two cores. For the simplest implementation, we can directly add one more Q compare as in Figure 10. Note that this final Q compare is a little bit different from the other Q compares. Four inputs are input to find the minimal two values and one more MUX2 element is needed.


[bookmark: _Ref477866764]Figure 10: Extra hardware for final Q compare
One possibility to reduce the overhead is to share the original Q compare engine. In this case, some MUXs would be needed for the input/output selection. The embodiment is shown in Figure 11. In this embodiment there are a total of 6 extra MUX2 elements needed.


[bookmark: _Ref477866787]Figure 11: Extra hardware for the final Q compare to share the  original Q compare engine.

Considering the design of  with the dual-core decoder, the logic area overhead is  MUX2. This is larger than the shift network based on a QSN switch overhead.
Observation 10: The final Q compare logic area overhead of the dual-core decoder with  is 1536 MUX2 elements (assuming hardware sharing within the Q compare) which is larger than the overhead of a shift network based on a QSN switch for  when compared with.
The other logic area overhead of the dual-core decoder comes from the switches between LLR memory banks to the shift network. Although the switches are not a necessity for a dual-core decoder, when implemented with these additional switches they can reduce the latency and therefore increase the throughput as shown in the missing final Q compare of layer index 40/42 in Figure 6. 
Observation 11: The logic area overhead of the switches between LLR memory banks and the shift network is 512 MUX2 elements.
Observation 12: The logic area overhead of a dual-core decoder of  (2048 MUX2 elements) is much larger than that of a single-core decoder of. (1023 MUX2 elements)

[bookmark: _Ref477991068]Comparison under the Same Degree of Total Parallelism 
In previous subsections, the scheduling design and logic overhead are analysed and compared for single-core and double core settings. Since a design has double the inherent parallelism than a  design, this subsection is denoted for the comparison under the same degree of total parallelism. In particular, we will compare single-core  and dual-core  over a variety of code rates. 
For the comparison, we will also consider a latency bound for decoding LTE-like MSC design subject to a target of 10 Gbps at code rate 8/9 and a single block parallel decoder. Assuming 1 GHz clock rate, 8 average iterations, and 8192 codeblock size, the cycle bound per iteration at code rate 8/9 can be found to be 102 cycles. For a given code rate R, the corresponding cycle bound per iteration can be related to code rate 8/9 by

To obtain the inverse CB number ratio w.r.t. code rate 8/9, we first estimate the CB number by performing CB segmentation over a scaled TBS from LTE TBS of 100 RBs. The TBS scaling considers 2.75 times of RB expansion and 4 times MIMO layer expansion (an NR TB can have 4 layers), giving a combined factor of 11. Below in Table 4 shows an example for obtaining the cycle bound from LTE TBS values, and repeating the procedure can provide the bound for the considered code rate range.
Table 4: Example derivation of latency bound from reference LTE TBS values
	LTE TBS
	97896
	
	84760
	63776
	Note: 100 RB

	Code rate
	0.927
	0.889
	0.803
	0.604
	Note: 256QAM, 132 RE per RB

	Spectral efficiency (SE)
	7.417
	7.112
	6.421
	4.832
	

	Estimated NR TBS
	1076856
	1032511
	932360
	701536
	Note: Scaled by 11; interpolation w.r.t SE

	CB number
	132
	127
	110
	86
	Note: Max. CBS = 8192, 24 bits for TB CRC and CB CRC

	Inverse CB number ratio w.r.t code rate 8/9
	0.962
	1
	1.104
	1.477
	Note:
(CB number) / (CB numer at code rate 8/9)

	Cycle bound per iteration
	98
	102
	112
	150
	Note: Reference 102 cycles at code rate 8/9


We compare cycle requirement and throughput of a single-core decoder with for the proposed QC-LDPC code with that of a dual-core decoder with  for the other proposals. The cycle requirement and the latency bound based on the hardware pipeline scheduling are shown in Figure 12.
[image: ]
[bookmark: _Ref478200160]Figure 12: Cycle requirement comparison based on alignment of logic area
Observation 13: The proposed Mediatek QC-LDPC code with  shows better latency than the other proposals with under the same degree of total parallelism. It is also the only design that can fulfil the latency bound.
In Table 5 and Figure 13, we further show the throughput comparison for CR= {0.33, 0.5, 0.66, 0.89}.
[bookmark: _Ref477989903]Table 5: Throughput and througput loss for various proposals
	
	T-put (Gbps)
	T-put lose ratio  compared with Mediatek R1-88bis

	CR
	0.33
	0.5
	0.67
	0.89
	0.33
	0.5
	0.67
	0.89

	Mediatek R1-88bis
	3.8
	5.8
	8.1
	14.8
	0
	0
	0
	0

	Samsung R1-88
	2.5
	4.1
	6.6
	14.6
	34.2%
	29.3%
	18.5%
	1.4%

	LG BC1
	2.2
	3.7
	6.1
	14.2
	42.1%
	36.2%
	24.7%
	4.1%

	Ericsson BG1
	2.1
	3.6
	5.8
	12.2
	44.7%
	37.9%
	28.4%
	17.6%



 [image: ]
[bookmark: _Ref478200350]Figure 13: Throughput comparisoin based on alignment of logic area
[bookmark: _GoBack]Observation 14: The throughput gain of the Mediatek proposed QC-LDPC code with gets larger when the CR decreases toward 1/3 under same degree of total parallelism.
Decomposed Base Matrix
It is well known that when shift size  is a multiple of  then we can decompose the QC-LDPC code into another equivalent QC-LDPC code with shift size,. In the decomposition, the number of VN blocks will be  times the number of the original VN blocks. 
For =2, the original shifted identity matrix with shift value of v can be decomposed into 2 half-sized shifted identity matrices given by 

Figure 14 shows an example to decompose a QC-LDPC kernel matrix from Z=512 to Z=256.
[image: ]
Figure 14
This flexibility of this decomposition allows one to design a low-cost half-block parallel decoder for low throughput UEs. In addition, the dual-core decoder with  can also be easily used to decode this decomposed QC-LDPC code. In this chapter, we would like to compare to the throughput of the QC-LDPC code proposed in [2], which is the best code among the proposals with. The QC-LDPC code proposed by Mediatek in [1] can be decomposed and decoded by a dual-core decoder with. The comparisons are based on practical pipeline scheduling and the results are shown in Figure 15 and Figure 16. Therefore, assuming the same hardware of the dual-core decoder with the shift size of  and no switch is added between two cores and memory banks, as shown in the Figure 15, we can observe that the cycle requirement of the one proposed in [2] is obviously larger than that proposed by Mediatek. 
Observation 15: Based on the same hardware of a dual-core decoder without switches between the two cores and the memory banks, the latency and throughput of the decoder for the Mediatek proposed QC-LDPC code is superior.
If we add switches between cores and memory banks, the latencies of both proposals can be improved. However, as observed in Figure 15, the improvement is more significant for the Mediatek proposed QC-LDPC code. 
Observation 16: If we add switches between cores and memory banks, the latency and throughput can be improved for all proposals. However, the improvement of the Mediatek proposed QC-LDPC code is more significant.
Observation 17: The decomposition scheme helps to compare different QC-LDPC codes of  and  under the same hardware complexity. And the result shows that a compact QC-LDPC code with  has higher throughput than that of a QC-LDPC code with.

[image: ]
[bookmark: _Ref477976378]Figure 15: Cycle requirement comparison 
[image: ]
[bookmark: _Ref478040650]Figure 16: Throughput comparisoin
Row Parallel Decoder
A row-parallel decoder architecture is proven to provide extremely high throughput of tens of Gb/s in [8], [9] and [10]. In a row-parallel decoder, all variable nodes corresponding to one segment of a check node (CN) block are processed in parallel and the size of the segment is the design freedom on the parallelism of the decoder. Some considerations on QC-QC-LDPC code structure are discussed in [1] to efficiently support a row-parallel QC-LDPC decoder. Here, we compare the throughput normalized with the logic area among different proposed QC-LDPC codes. 
Throughput Comparison
The Quasi-Row Orthogonal (qRO) QC-LDPC characteristic is introduced in [1]. The conflict VNs are strictly only located in the punctured VNs. Based on our simulation, these VNs can be processed “with a flooding schedule” without loss of performance and we think the reason is because the demand to speed up convergence of these punctured VN is already reflected on the high degree of the punctured VNs. The slight de-acceleration from flooding decoder to layered decoder depends on the update frequency of each VN in each iteration. Therefore, in a pure layered decoder, the punctured VNs with extremely high degree are over accelerated and may not result in performance gain. The proposed “layered with partial flooding decoder” in [6] can result in a balanced update frequency of all VNs in each iteration and results in no performance lose. For easy and fair comparison, we relax the definition of qRO such that the conflict VNs can be in any two VNs in one layer in other proposals. With this relaxed version, we list the layer number, the maximal layer weight and the information block size of different proposals in Table 6.
[bookmark: _Ref478051052]Table 6: Metric of row parallel decoder
	
	
	[1]
	[2]
	[3]
	[4]
	[5]

	
	
	
	
	High Family
	Base graph 1
	BC1

	Information VN number
	i
	16
	32
	30
	32
	32

	Layer number
	l
	15
	29
	29
	45
	44

	Maximal row group weight
	n
	21
	34
	25
	29
	25

	Metric
(Area efficiency)
	
	5.1
	3.2
	4.1
	2.5
	2.9



The direct throughput comparison would be inversely proportional to this layer number. But we think that it is not quite fair to only consider the layer number because the logic area would be highly proportional to the shift size and the maximal row group weight. Based on this concept, we proposed a metric

[bookmark: _Ref474003648]to fairly compare the throughput in [6] for a row parallel decoder, where i is the number of information VN blocks,  is the layer number and  is the maximal group row weight. As observed from Table 6, the proposed QC-LDPC code in [1] not only has the highest row orthogonality to achieve extremely high throughput but also has the best area efficiency.
Observation 18: The Mediatek proposed QC-LDPC code in [1] not only has the highest row orthogonality to achieve extremely high throughput but also has the best area efficiency.
Routing Complexity
As discussed in [7], when the number of LLR memory slices is larger than the input number of check node units (CNU), some multiplexers (MUX) are needed to route the LLR memory to the input of the CNUs. These MUXs are called the routing network. Intuitively, when the mismatch between the number of memory slices and input number of CNU is larger, the routing network would be more complicated. 
The routing complexity would depend on the exact design of the base matrix and is hard to quantify from simple parameters of the base matrix. The routing complexity of QC-LDPC code [2] is analysed in [7]. Intuitively, the routing problem of an QC-LDPC code with a compact base matrix would be much easier than the one with a non-compact base matrix.
In addition, the larger the row number, the more complicated the routing network becomes because the routing needs to fulfill more connections between CN blocks and VN blocks. As you can see, the proposed QC-LDPC code in [1] has only 34 rows to be routed while the QC-LDPC code in [2] has 66 rows to be routed. (Considering only CR down to 1/3)
Moreover, when an QC-LDPC codebook is composed based on several base matrices, the routing complexity would become even more complicated because the routing network needs to overlay the routing of all these matrices. The number of base matrices proposed by different companies is listed in Table 7.
Observation 19: The QC-LDPC code proposed in [1] by Mediatek is more compact and has less check nodes to be routed and thus is expected to have better routing area efficiency. 
[bookmark: _Ref474009275]Table 7: Number of protomatrix
	
	[1]
	[2]
	[3]
	[4]
	[5]

	# of Protomatrix
	1
	1
	3
	2
	2



Memory Area Efficiency
The memory area efficiency is also a major consideration in the hardware implementation. The basic idea is that when the memory size is the same, a smaller number of memory slices would result in better area efficiency. Therefore, if comparing area efficiency of LLR memory between [1] and [2], we can expect that the number of memory slices for a row parallel decoder to decode the proposed QC-LDPC code in [1] is less than that proposed in [2]. Therefore, the decoder for the proposed QC-LDPC code in [1] should have better area efficiency. Here we try to quantify the area based on the synthesis result of a 28HPM process node such that we can have a sense of how a compact base matrix affects the memory efficiency. Based on the assumption of CBS=6144 and CR=1/3, we use the parameters in Table 8 to predict the area of the LLR memory. The parallelism of these two decoders is selected based on the same throughput assumption.
[bookmark: _Ref471646644]Table 8
	Reference QC-LDPC code
	[1]
	[4]

	LLR bit width
	8
	8

	Lifting Factor
	384
	192

	# of layers
	13
	16

	# of non-raptor VN
	19
	38

	# of Memory Slices
	19
	38



Considering the number of memory slices, the diagonally extended VN blocks (VN38~VN97) of [2] can all share memory slices with the non-diagonally extended VN blocks (VN0~VN37) and the proposed QC-LDPC code in [1] can therefore use the memory more efficiently. 
With the parameters of Table 8, we present a prediction of the memory area in Table 9. Although the LLR memory requirement is roughly the same, the LLR memory area of a compact base matrix like the one presented in [1] by Mediatek can be 17.5 % smaller than that of [2] even though its memory storage size is actually slightly larger.
[bookmark: _Ref471647599]Table 9: LLR Memory area prediction based on 28HPM
	Protomatrix
	LLR Memory size
	# of memory slices
	depth
	width
	area(um^2) @ 28HPM

	[1]
	50*8*384=153600
	19
	153600/19/48=169
	48
	110029

	[2]
	98*8*192=150528
	38
	150528/38/32=124
	32
	129238 



Observation 20: The QC-LDPC code proposed in [1] by Mediatek is more compact and thus should derive better memory area efficiency. 
Conclusion
The following summarizes the observations and proposals in this contribution.
Observation 1: Single core decoder is mostly design friendly and is preferred unless throughput or performance requirements cannot be reached.
Observation 2: Comparison among companies based on the decoder with the same core number is based on the alignment of logic area efficiency. (Throughput is considered as normalization term)
Observation 3: Comparison between the single core decoder with and the dual core decoder with  is based on the alignment of logic area.
Observation 4: The throughput of the decoder for the Mediatek proposed QC-LDPC code is almost twice that of other proposals with smaller shift sizes. . In this case, logic area efficiency is well aligned and the memory efficiency of the decoder for the larger shift size is much better.
Observation 5: The larger number of memory banks the larger memory area we will have. It is not a good strategy for a decoder architecture to have excessive memory partitioning.
Observation 6: The extra final Q compare to combine the result from two cores will add one extra pipeline stage. Otherwise, the clock frequency would degrade for 28% based on synthesis result.
Observation 7: The cycle requirement overhead of dual core decoder comparing with single core decoder is from 20% to 60% and thus cannot be ignored.
Observation 8: The throughput of the decoder for the Mediatek proposed QC-LDPC code is almost twice that of other proposals. In this case, logic area efficiency is well aligned and the memory efficiency of the decoder for the larger shift size is much better.
Observation 9: Considering a shift network based on a QSN switch, the logic area overhead of  comparing with   is 1023 MUX2 elements.
Observation 10: The final Q compare logic area overhead of dual-core decoder with  is 1536 MUX2 elements (assuming hardware sharing within the Q compare) which is larger than the overhead of a shift network based on a QSN switch for  when compared with.
Observation 11: The logic area overhead of the switch between LLR memory and shift network is 512 MUX2elements.
Observation 12: The logic area overhead of a dual-core decoder of  (2048 MUX2 elements) is much larger than that of a single-core decoder of. (1023 MUX2 elements)
Observation 13: The Mediatek proposed QC-LDPC code with  shows better latency than the other proposals with  under the same degree of total parallelism. It is also the only design that can fulfil the latency bound.
Observation 14: The throughput gain of the Mediatek proposed QC-LDPC code with 16 gets larger when the CR decreases toward 1/3 under same degree of total parallelism.
Observation 15: Based on the same hardware of a dual-core decoder without switch between the two cores and the memory banks, the latency and throughput of the decoder for the Mediatek proposed QC-LDPC code is superior.
Observation 16: If we add the switch between cores and memory banks, the latency and throughput can be improved for all proposals. But the improvement of the Mediatek proposed QC-LDPC code is larger.
Observation 17: The decomposition scheme helps to compare different QC-LDPC codes of  and  under the same hardware complexity. The result shows that a compact QC-LDPC code with  has higher throughput than that of a QC-LDPC code with.
Observation 18: The Mediatek proposed QC-LDPC code in [1] not only has highest row orthogonality to achieve extremely high throughput but also has the best area efficiency.
Observation 19: The QC-LDPC code proposed in [1] by Mediatek is more compact and has less check node to be routed and thus is expected to have better routing area efficiency. 
Observation 20: The QC-LDPC code proposed in [1] by Mediatek is more compact and thus should derive better memory area efficiency. 
Proposal 1: The QC-LDPC code proposed in [1] by Mediatek should be adopted as the QC-LDPC code for NR as it meets or exceeds the throughput and latency requirements of NR and also of all other proposed codes with lower maximum lift size.
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Figure 17: Layer Partition of LDPC code in [3]
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