[bookmark: OLE_LINK3]3GPP TSG RAN WG1 Meeting #88bis		  R1-1704381
Spokane, USA, 3rd - 7th April 2017
Agenda Item:     8.1.4.1.2
Source:              ZTE, ZTE Microelectronics
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]Title:                Implementation Consideration on LDPC codes
Document for:   Discussion and Decision

Introduction
[bookmark: OLE_LINK60][bookmark: OLE_LINK61]At the 3GPP TSG RAN1 #88 meeting, the following agreement and conclusion have been achieved [1]:
Agreement: 
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined for a H matrix are selected from the following set of {Kmax, Zmax} pairs:
· {8192, 256}, {8192, 512}, {FFS near 8192, 320}
· Number of base graphs for eMBB is FFS between 1 and 2
· Evaluate the potential gains from 2 base-graphs compared to a single base-graph until RAN1#88bis
Conclusion for some code design target:
· At least support 20Gbps decoder information throughput with code rate 8/9
· Also aim for good throughput performance at lower code rate(s)
· FFS the details of how to assess throughput performance at lower code rates, including whether the assessment is relative or absolute, and other constraints (e.g. complexity)
[bookmark: OLE_LINK11][bookmark: OLE_LINK12]For a given code block size, compact base graph with smaller number of information variable node has a larger lifting factor and therefore can support a larger parallelism. The compact base graphs (as in [3] and [4]) with kbmax=16 have the maximal lift size of Zmax=512, while some larger base graphs (as in [5], [6] and [7]) with larger kbmax=32 have the maximal lift size of Zmax=256. 
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK4]In [2], decoder’s implementation complexity, throughput and latency has been discussed. From the observations in [2], we can see that compact base matrix with Zmax=512 has better decoder area efficiency than large size base graph with Zmax=256 for both row paralleled and block paralleled decoder architectures. 
In this contribution, we’d like to further discus the following implementation issue corresponds to these two kinds’ base graphs, including:
· further comparison of the shift network, CNU and memory complexity; 
· throughput requirements analysis at different code rates;
· decoding latency for practical block paralleled decoders;
· updated area efficiency comparison by taking the above factors into account.
The analysis in this contribution will further illustrate the advantages of the compact base graphs in terms of decoder’s complexity and area efficiency.
Analysis on decoder’s hardware complexity 
In this section, we compare the decoder’s hardware overhead of these two kind of base graphs. Note that the performance comparison of those LDPC base graphs is presented in our companion contribution [15] where the compact base graph in [3] showing a comparable or even better performance to those larger base graphs.

Hardware based on row parallel decoder
Route network
Route network is the interconnections between memory slices and CNU pins. To perform row parallel decoding, there must be selection circuits for route networks. Figure 1 and Figure 2 gives tow examples of large base graphs with complex route network and compact base graphs with simple directly connected route networks.
[image: ]
Figure 1 complex route network for large base graph
[image: ]
Figure 2 simple route network for compact base graph
If large base graph uses direct connection from each memory slice to a dedicated pin of CNU, as shown in Figure 3, the number of CNU pins will be much increased, which will result in a high complexity of shift network and CNUs.
[image: ]
Figure 3 route network of large base graph by direct connection
[image: ]
*denotes direct connections from memory slices to CNU pins are employed.
Figure 4 Hardware overhead comparison of route network @ different max parallelism level (PM)
Note that, for fair comparison, the complexity of route networks should be compared under the same parallelism level, which means under the conditions of comparable throughput. More detailed information for route network can be found in [2].
Observation 1: The hardware overhead of route network is affected by the size of base graphs. Compact base matrix can use simple route network by directly connect each memory slice with a dedicated pin of CNU.
Shift network
The total number of shift networks is related to the number of input pins of CNU. For direct connections of [3], [4] and [5]*, if the shift values in the columns equal to zero, the shift network connected to the corresponding pin of CNU can be saved. Table 1 gives the number of shift networks and Figure 5 compares the hardware overhead of them.
Table 1 Number of shift networks
	
	Compact base graphs
	Large base graphs

	
	Code-Z
[3]
	Code-M
[4]
	Code-S
[5]
	Code-S*
[5]*
	Code-E
[6]
	Code N
[7]

	No. of shift networks
	19
	19
	19
	37
	29
	22


[image: ]
*denotes direct connections from memory slices to CNU pins are employed.
Figure 5 Hardware overhead comparison of shift network @ different max parallelism level (PM)
Note that, the comparison in [8] is unfair. The comparison is between parallelism level 512 for compact base graph and 256 for large base graph. It should not be ignored that decoder with parallelism 512 has twice the throughput of decoder with parallelism 256 does.
Observation 2: For row paralleled decoder, total complexity of shift networks is related to the number of pins of CNU, which means that the compact base matrix has advantages in total complexity of shift networks. 
Check node function unit
[bookmark: OLE_LINK8]Complexity of CNU is also related to the number of input pins of CNU. For base graphs with large size such as in [5] , [6] and [7], the number of input pins can be reduced to the max row weight. For compact base graphs in [3] and [4], one –to-one direct connection between memory slices and CNU pins is used, therefore, the number of input pins equals to the number of memory slices, which is counted by columns in the base matrix. Note that all degree one nodes are merged to a single memory slice. 
Table 2 gives the number of input pins of CNU. [5]* denotes that the base graph in [5] is assumed to use direct connection between memory slices and CNU pins. Figure 6 compares hardware overhead of them.
Table 2 Number of input pins
	
	Compact base graphs
	Large base graphs

	
	Code-Z
[3]
	Code-M
[4]
	Code-S
[5]
	Code-S*
[5]*
	Code-E
[6]
	Code N
[7]

	No. of input pins
	21
	21
	19
	39
	29
	22


[image: ]
*denotes direct connections from memory slices to CNU pins are employed.
Figure 6 Hardware overhead comparison of CNU @ different max parallelism level (PM) 
[bookmark: OLE_LINK7][bookmark: OLE_LINK10]Observation 3: For row paralleled decoder, the CNU for base matrix with large size is more likely to have higher hardware overhead than the CNU for compact base matrix.
Memory
The amount of memory includes the LLRs storage and check nodes storage which is related to the maximum codeword length. Based on the survey of open literature, we can see that the percentage of memory area can be varied from 26.67% [13] to 64.7% [14] with codeword length of 2304 and 1944 respectively, mainly because of the varied percentage of route/shift networks and CNUs. 
One thing need to be aware is that when the memory size is the same, less memory slice number would result in better area efficiency [9]. Table 3 gives the memory overhead comparison of Kmax=8192 bits and code rate =1/3 based on our synthesis result. Note that all degree one nodes are merged to the last single memory slice. The width of the last memory slice is 48, while the width of the other memory slices is 16. In this way, the total area of memory can be minimized. Note that for [5] and [5]*, the memory area is the same.
Table 3 Memory area estimation based on tsn 28HPC [16] for row parallel decoder
	
	Compact base graphs
	Large base graphs

	
	[3]
	[4]
	[5]
	[6]
	[7]

	LLR bit width
	8
	8
	8
	8
	8

	Total LLR size 
	204800
	204800
	200704
	200704
	200704

	No. of memory slices
	20+1
	20+1
	38+1
	38+1
	38+1

	Memory width
	16 and 48
	16 and 48
	16 and 48
	16 and 48
	16 and 48

	Total area (um^2)
	73657
	73657
	93434
	93434
	93434

	Increased area
	0%
	0%
	26.85%
	26.85%
	26.85%


The synthesis result in [9] also has shown that when the number of memory slices increases the memory area can be increased by about 17.5%. This means the compact base graphs has better memory efficiency than the large base graphs.
[bookmark: OLE_LINK9]Observation 4: For row paralleled decoder, the compact base graph has better memory area efficiency than a large base graph.
Hardware based on block parallel decoder
Shift network and route network
To support flexible codeword length and code rate, shift network is also required. However, compared to row parallel, the number of shift networks for block parallel architecture can be reduced. The total complexity of shift network is independent of the number of memory slices or row weight of the base matrix. 
For multi-core processing, the memory can be divided into many banks to reduce memory conflict. In [10], the number of memory banks is much larger than the number of cores, thus the routing network is inevitable. It will lead to a sharp increase in the complexity, and will increase the memory area just like the previous analysis of memory. Obviously, it is not efficient in terms of hardware.
Figure 7 is an illustration of shift network and route network for multi-core processing as shown in [10].
[image: ]
Figure 7 shift network and route network for multi-core processing as in [10]
Table 4 shows the complexity comparison of shift network and route network for a compact base graph (Code-Z) and a large base graph (Code-S), where the scheduling method in [10] for large base graph (Code-S) is used for this comparison.
Table 4 Complexity comparison of shift network and route network
	
	Compact base graphs
	Large base graphs

	Zmax
	512
	256

	No. of “2-1 MUX” per shift network
	6144
	2816

	No. of cores (= No. of shift networks)
	1
	2

	No. of memory banks
	1
	39

	No. of “2-1 MUX” for route network
	0
	19456

	Total No. of “2-1 MUX” for shift network and route network
	6144
	25088

	Increased complexity
	-
	308.3%


Where, the (total number of “2-1 MUX”) = (No. of cores) * (No. of “2-1 MUX” per shift network)+ (No. of “2-1 MUX” for route network). By considering routing network and shift network as a whole, we can see that compact base graph is less complex than the large base graph. 
Observation 5: The large base graph has no advantage in the complexity of shift network, when the complexity of the routing network is taken into account. The complexity of the large matrix may even be much higher than that of the compact base graph. 
Check node function unit
The inner structure of CNU for single block decoder is shown in Figure 8. There are one “addition”, one absolute value calculation and 2 “comparison-selection” circuits in a single CNU. The CNU for block parallel is simpler than that for row parallel because it reads and processes the information from the memory slices in a kind of “serial manner”. The total complexity of CNUs is related to the parallelism level. 


Figure 8 inner structure of CNU for single block decoder
For the case of multi-core processing, we need to select the final minimum and the second minimum Q values from the 2*c Q values generated by the multiple cores, where c denotes the number of cores. Therefore an extra “final Q compare” circuits is unavoidable. For example, Figure 9 gives the inner structure of 2-core processing CNU. The “final Q compare” circuits are highlighted by red color. The additional hardware overhead includes at least 2 “comparison-selection” circuits and one 2-1 MUX per bit.


Figure 9 inner structure of CNU for 2 block paralleled decoder
It can obvious that the complexity of block parallel is related to the number of cores. A larger number of cores would have higher complexity of the “final Q compare” circuits. Accordingly, compact base graph has less complexity in CNU.
Figure 10 shows the complexity of the CNU when the parallelism is 512. The large base graph (Code-S) has two cores, each of which has a parallelism of 256 and compact base graph (Code-Z) has only 1 core of parallelism 512. 
[image: ]
Figure 10 complexity of the CNU for block parallel
Observation 6: For block paralleled decoder, the total complexity of CNUs is related to the parallelism level and the number of cores. Under the condition of the same parallelism, the large base graph needs more cores than the small base graph does, so the large base graph’s CNU complexity is higher.
Memory
The amount of memory for the block paralleled decoder is related to the maximum codeword length and the number of memory slices. 
One thing need to be aware is that a single decoder with large base graphs of kbmax=32 and Zmax=256 can hardly reach the peak data rate of 20 Gbps with block parallel architecture, unless multiple (maybe 4 or 5) blocks working in parallel. However, processing multiple base graph edges in parallel also has problems: for example, it may lead to additional control on resolving memory conflict and/or degradation of memory efficiency caused by dividing a single memory bank into several smaller slices. Table 5 shows the memory estimation of 2 cores with Zmax=512 each and 4 cores with Zmax=256 each based on our synthesis result. Table 6 shows the memory estimation of single cores with Zmax=512 and dual cores with Zmax=256 each. The width of the memory banks is 32.
Table 5 Memory area estimation for block parallel decoder @ tsn 28HPC
(2 cores with Zmax=512 each and 4 cores with Zmax=256 each)
	　
	kb
	Lifting Factor
	LLR Memory size
	area(um^2) @ tsn28HPC
	increased area

	large base graphs with Zmax=256
	Code-S
	32
	256
	200704    
	62990.69 
	11.92%

	
	Code-E
	32
	256
	200704    
	62990.69 
	11.92%

	
	Code-N
	32
	256
	200704    
	62990.69 
	11.92%

	compact base graphs with Zmax=512
	Code-M
	16
	512
	204800    
	56283.86 
	0.00%

	
	Code-Z
	16
	512
	204800    
	56283.86 
	0.00%


Table 6 Memory area estimation for block parallel decoder @ tsn 28HPC
(single cores with Zmax=512 and dual cores with Zmax=256 each)
	　
	kb
	Lifting Factor
	LLR Memory size
	area(um^2) @ tsn28HPC
	increased area

	large base graphs with Zmax=256
	Code-S
	32
	256
	200704    
	55469.89 
	6.16%

	
	Code-E
	32
	256
	200704    
	55469.89 
	6.16%

	
	Code-N
	32
	256
	200704    
	55469.89 
	6.16%

	compact base graphs with Zmax=512
	Code-M
	16
	512
	204800    
	52249.62 
	0.00%

	
	Code-Z
	16
	512
	204800    
	52249.62 
	0.00%


Observation 7: For block paralleled decoder, a compact base graph has better memory area efficiency than a large base graph if multi-core processing is used.
Analysis on decoder’s throughput
We know that throughput can be calculated as:
Throughput = Bandwidth * Spectrum Efficiency (SE).
Since the maximum throughput usually corresponds to the maximum bandwidth. This shows that the throughput bound is proportional to the spectral efficiency. It has been agreed that 20Gbps is supported at code rate 8/9. Therefore, the reference throughput at different SE can be derived as:
Throughput (reference) = 20Gbps*SE/(8/9*8).
Here we assume the max throughput corresponds to 256QAM. CQI or MCS table of LTE can be used for estimating the NR’s throughput requirement at different code rate. In this contribution, we use CQI table for reference, since each CQI level has a specific SE and associated code rate.
Table 7 CQI of LTE-A
	CQI index
	modulation
	code rate x 1024
	efficiency

	0
	out of range

	1
	QPSK
	78
	0.1523

	2
	QPSK
	193
	0.3770

	3
	QPSK
	449
	0.8770

	4
	16QAM
	378
	1.4766

	5
	16QAM
	490
	1.9141

	6
	16QAM
	616
	2.4063

	7
	64QAM
	466
	2.7305

	8
	64QAM
	567
	3.3223

	9
	64QAM
	666
	3.9023

	10
	64QAM
	772
	4.5234

	11
	64QAM
	873
	5.1152

	12
	256QAM
	711
	5.5547

	13
	256QAM
	797
	6.2266

	14
	256QAM
	885
	6.9141

	15
	256QAM
	948
	7.4063


[bookmark: OLE_LINK5][bookmark: OLE_LINK6]Figure 11 and Figure 12 shows the throughput comparison of row parallel and block parallel decoder respectively. For row parallel, the throughput in Figure 11 is calculated as:

,
where I is the decoding iteration, f is the clock frequency, K is the information block size and L is the number of layers used for layered decoding.
For block parallel, the throughput in Figure 12 is calculated as:

,
Where N represents the coded block size, D𝑣 is the average variable node degree, 𝑃 represent the parallelism level and c is the number of cores.
 It can be seen from Figure 11 and Figure 12 that both compact base graph and large base graphs can satisfy the throughput requirement. The difference is that the throughput of compact base graph is higher than that of large base graph. The gap is more obvious under row parallel relative to block parallel. Note that in Figure 12, the max throughput for a single decoder is target at 20Gbps, and the possible extra overhead to resolve memory conflict has not been taken into account.
[image: ]
Figure 11 Throughput of row parallel decoder
[image: ]
[bookmark: OLE_LINK15][bookmark: OLE_LINK16]Figure 12 Throughput of block parallel decoder
However, from a practical point of view, it is more reasonable to target at 10Gbps as the highest throughput for a single decoder. This is because in order to solve memory conflict, the decoder throughput cannot be proportional to the number of cores. 10 Gbps will be a proper target for the decoding settings of lower complexity: 1-core of Zmax=512 or 2-cores of Zmax=256. Figure 13 shows the throughput of 10 Gbps decoder with considering the influence of memory conflict.
The throughput of large base graph (Code-S) and compact base graph (Code-Z) in Figure 13 is calculated as:


where Cy represents the decoding cycles per iteration. Table 8 is the comparison of decoding cycles for compact base graph (Code-Z) and large base graph (Code-S) at different code rate. 
Table 8 number of cycles per iteration
	
	Code Rate

	
	0.33
	0.4
	0.438
	0.479
	0.602
	0.650
	0.754
	0.853
	0.864
	0.923

	Compact BG 
	273
	228
	212
	194
	146
	131
	107
	75
	73
	63

	Large BG 
	410
	348
	313
	276
	191
	161
	113
	81
	81
	65


[image: ]
Figure 13 Throughput of block parallel decoder target at 10Gbps
As can be seen from Figure 13, both compact base graph with single core and large base graph with dual cores can meet the throughput requirement. When considering overhead to resolve memory conflict, Code-Z of compact base graph has better throughput than Code-S of large base graph.
Observation 8: Throughput is proportional to the spectral efficiency. LTE’s CQI or MCS table can be used for estimating the NR’s throughput requirement at different code rate.
Observation 9:  Both large base graph and small base graph can meet the requirement of throughput. However, for block parallel decoder, compact base graph has better throughput than large base graph. Furthermore, large base graph needs more cores than compact base graph, which leads to higher implementation complexity for large base graph.
Comparison on area efficiency
In this section, we update the decoder’s area efficiency comparison for compact and large base graphs based on both row parallel and block parallel architecture. 
We use literature [13] and [14] to calculate the chip area for row parallel and block parallel architecture decoders respectively. The methodology for scaling the chip area is similar to that in [12]. The memory efficiency degradation affected by increased slice number is included in calculation. The extra decoding latency and hardware overhead due to memory conflict has been taken into account as well. 
Comparison on row parallel architecture 
We use the following equation (1) to calculate the throughput for row paralleled decoder:

                                        (1)
Where,
 I is the decoding iteration, I=10;
f is the clock frequency, f=1GHz;
K is the information block size, K=8192;
 and L is the number of layers used for layered decoding.
Figure 14 and Figure 15 show the relative ratios in area efficiency in terms of parallelism for large base graph (Code-S, Code-S*) and compact base graph (Code-Z). 
[image: ] 
Figure 14 relative area efficiency ratios by row paralleled decoder @ code rate = 8/9
[image: ] 
Figure 15 relative area efficiency ratios by row paralleled decoder @ code rate = 1/3
Comparison on block parallel architecture 
For block paralleled decoder, we use the following equation (2) to calculate throughput:

           (2),
where f is the clock frequency, K is the information block size and Cy represents the decoding cycles per iteration. Note that, Cy is related to the number of 1s (which is denoted as “N1s”) in the base graph and also related to the number of cores (which is denoted as “c”) working in parallel. Due to memory conflicts and other reasons, Cy is usually greater than N1s/c.
Figure 16 and Figure 17 show the relative ratios in area efficiency in terms of parallelism. 
[image: ]
Figure 16 Relative area efficiency ratios by block paralleled decoder @ code rate = 8/9
[image: ]
Figure 17 Relative area efficiency ratios by block paralleled decoder @ code rate = 8/9
Observation 10: Compact base matrix with Zmax=512 has better decoder area efficiency than large size base graph  with Zmax=256 for both row paralleled and block paralleled decoder architectures.
Proposal 1: Compact base matrix should be adopted for eMBB LDPC design to reduce the decoder’s implementation complexity and improve the chip area efficiency.
Conclusion
For flexible LDPC design, we have the following observations and proposals:
Observation 1: The hardware overhead of route network is affected by the size of base graphs. Compact base matrix can use simple route network by directly connect each memory slice with a dedicated pin of CNU.
Observation 2: For row paralleled decoder, total complexity of shift networks is related to the number of pins of CNU, which means that the compact base matrix has advantages in total complexity of shift networks. 
Observation 3: For row paralleled decoder, the CNU for base matrix with large size is more likely to have higher hardware overhead than the CNU for compact base matrix.
Observation 4: For row paralleled decoder, the compact base graph has better memory area efficiency than a large base graph.
Observation 5: The large base graph has no advantage in the complexity of shift network, when the complexity of the routing network is taken into account. The complexity of the large matrix may even be much higher than that of the compact base graph. 
Observation 6: For block paralleled decoder, the total complexity of CNUs is related to the parallelism level and the number of cores. Under the condition of the same parallelism, the large base graph needs more cores than the small base graph does, so the large base graph’s CNU complexity is higher.
Observation 7: For block paralleled decoder, a compact base graph has better memory area efficiency than a large base graph if multi-core processing is used.
Observation 8: Throughput is proportional to the spectral efficiency. LTE’s CQI or MCS table can be used for estimating the NR’s throughput requirement at different code rate.
Observation 9:  Both large base graph and small base graph can meet the requirement of throughput. However, for block parallel decoder, compact base graph has better throughput than large base graph. Furthermore, large base graph needs more cores than compact base graph, which leads to higher implementation complexity for large base graph.
Observation 10: Compact base matrix with Zmax=512 has better decoder area efficiency than large size base graph  with Zmax=256 for both row paralleled and block paralleled decoder architectures.
Proposal 1: Compact base matrix should be adopted for eMBB LDPC design to reduce the decoder’s implementation complexity and improve the chip area efficiency.

References
[1] [bookmark: _Ref471653173][bookmark: _Ref471664568][bookmark: OLE_LINK19][bookmark: _Ref430615169]3GPP Draft Report of 3GPP TSG RAN WG1 #88.
[2] [bookmark: _Ref478066164]R1-1701599, “Complexity, throughput and latency considerations on LDPC codes for eMBB”, RAN1 #88, ZTE, ZTE Microelectronics.
[3] [bookmark: _Ref474094034]3GPP R1-1701600, “Further consideration on compact LDPC design for eMBB ", RAN1 #88, ZTE, ZTE Microelectronics.
[4] [bookmark: _Ref474094041]3GPP R1-1703697, "Compact QC-LDPC design ", RAN1 #88, MediaTek.
[5] [bookmark: _Ref474094050]3GPP R1-1703001, "Performance evaluation of LDPC Code ", RAN1 #88, Samsung.
[6] [bookmark: _Ref474094055]3GPP R1-1700108, "LDPC Code Design ", RAN1 #AH Jan, 2017, Ericsson.
[7] [bookmark: _Ref474094061]3GPP R1-1701028, "LDPC design for eMBB ", RAN1 #AH Jan, 2017, Nokia, Alcatel-Lucent Shanghai Bell.
[8] [bookmark: _Ref474094169]3GPP R1-1703922, “WF on Observation for Decoder Complexity", RAN1 #88, Samsung.
[9] [bookmark: _Ref474094710]3GPP R1-1703698, "QC-LDPC performance and complexity comparisons ", RAN1 #88,  MediaTek.
[10] [bookmark: _Ref474094834]3GPP R1-1703916, “WF on observation of latency”, RAN1 #88, LG, Samsung.
[11] [bookmark: _Ref462941517]X. Chen, S. Lin, V. Akella, “QSN—A Simple Circular-Shift Network for Reconfigurable Quasi-Cyclic LDPC Decoders”, IEEE Transactions on Circuits & Systems II Express Briefs, 2010, 57(10):782 – 786.
[12] [bookmark: _Ref465870075]3GPP R1-1610139, “Efficient channel coding implementations for EMBB”, RAN1 #86bis, Qualcomm Incorporated.
[13] [bookmark: _Ref462941822]M. M. Mansour and N. R. Shanbhag, “High-Throughput LDPC Decoders”, IEEE Trans. On VLSI systems, vol. 11, no. 6, December, 2003.
[14] [bookmark: _Ref465967872]M. M. Mansour and N. R. Shanbhag, “A 640-Mbs 2048-Bit Programmable LDPC Decoder Chip”, IEEE Journal of Solid-state Circuits, vol. 41, no. 3, March, 2006.
[15] [bookmark: _Ref478126281]3GPP R1-1704379, “Performance evaluation of LDPC codes for eMBB”, ZTE, ZTE Microelectronics.
[16] [bookmark: _Ref478131535]Quick reference for “tsn28hpcd127spsram_20120200_120a_SR”
Appendix : Block Scheduling for Code-Z can be find in the attached file.


- 1/14 -
image3.png

image4.png

image5.png

image6.png

image7.png

image8.wmf
C

input

C

sec min

min

min


oleObject1.bin
�

�

�

C


input


min


C


sec min


min



image9.emf
C

input

C

sec min a

min a

min

C

input

C

sec min b

min b

min

D

D

C

min

C

min

C

min

D

D

sec min


oleObject2.bin
�

�

C


C


input


C


sec min a


min a


min


C


input


C


sec min b


min b


min


D


D


min


C


min


C


min


D


D


sec min



image10.png

image11.wmf
rowparallel

fK

T

LI

-

×

=

×


oleObject3.bin

image12.wmf
blockparallel

v

fK

T

ND

I

Pc

-

×

=

×

×

×

éù

êú

êú


oleObject4.bin

image13.png

image14.png

image15.wmf
blockparallel

y

fK

T

IC

-

×

=

×


oleObject5.bin

image16.png

oleObject6.bin

image17.png

image18.png

oleObject7.bin

image19.png

image20.png

image21.emf
decoding 

cycles.xlsx


decoding cycles.xlsx
Code_Z(Code Rate = 0.88)

								0		1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17		18		19								Edge index:

						1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		-1		-1								0		1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17

						2		467		142		-1		72		470		12		360		166		196		131		294		-1		41		345		416		45		260		0		0		-1								0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17		18

						3		223		172		279		-1		-1		-1		-1		-1		-1		-1		-1		-1		-1		-1		-1		-1		-1		-1		0		0								0		1		2		18		19

						4		-1		258		429		69		390		242		160		48		337		-1		484		245		391		316		320		126		0		-1		-1		0								1		2		3		4		5		6		7		8		10		11		12		13		14		15		16		19

								1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17		18		19		20		21		22		23		24		25		26		27		28		29		30		31		32		33		34		35		36		37		38		39		40		41		42		43		44		45		46		47		48		49		50		51		52		53		54		55		56		57		58		59		60		61		62		63		64		65		66		67		68		69		70		71		72		73		74		75		76		77		78		79		80		81		82		83		84		85		86

								single core: row1->row2->row3->row4 (Parallelism=512)

				read				0		11		17		1		2		3		4		5		6		7		8		9		10		12		13		14		15		16										18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17								2		19		18		0		1		3		4		5		6		7		8		11		10		12		13		14		15		16		1		2		19						0		11		17		1		2		3		4		5		6		7		8		9		10		12		13		14		15		16

				SN						0		11		17		1		2		3		4		5		6		7		8		9		10		12		13		14		15		16										18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17								2		19		18		0		1		3		4		5		6		7		8		11		10		12		13		14		15		16		1		2		19						0		11		17		1		2		3		4		5		6		7		8		9		10		12		13		14		15		16

				Q calc.								0		11		17		1		2		3		4		5		6		7		8		9		10		12		13		14		15		16										18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17								2		19		18		0		1		3		4		5		6		7		8		11		10		12		13		14		15		16		1		2		19						0		11		17		1		2		3		4		5		6		7		8		9		10		12		13		14		15		16

				Q comp.				19						0		11		17		1		2		3		4		5		6		7		8		9		10		12		13		14		15		16										18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17								2		19		18		0		1		3		4		5		6		7		8		11		10		12		13		14		15		16		1		2		19						0		11		17		1		2		3		4		5		6		7		8		9		10		12		13		14		15		16

				update						1		2		3		4		5		6		7		8		10		11		12		13		14		15		16		19										0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17		2		11								18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		1		2		19		18		0		17						1		2		3		4		5		6		7		8		10		11		12		13		14		15		16		19										0		1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17

				write								1		2		3		4		5		6		7		8		10		11		12		13		14		15		16		19										0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17		2		11								18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		1		2		19		18		0		17						1		2		3		4		5		6		7		8		10		11		12		13		14		15		16		19										0		1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17

				row1

				row2

				row3

				row4



								dual cores of P=512 each (Parallelism = 512*2)

				read				0		2		4		6		8		10		12		14		16														18		0		4		6		8		10		12		14		16														18		0		4		6		8		10		12		14		16		2														0		2		4		6		8		10		12		14		16

								1		3		5		7		9		11		13		15		17																1		3		5		7		9		13		15		17														19		1		3		5		7		11		13		15		19		1														1		3		5		7		9		11		13		15		17

				SN						0		2		4		6		8		10		12		14		16														18		0		4		6		8		10		12		14		16												2		18		0		4		6		8		10		12		14		16		2														0		2		4		6		8		10		12		14		16

										1		3		5		7		9		11		13		15		17																1		3		5		7		9		13		15		17														19		1		3		5		7		11		13		15		19		1														1		3		5		7		9		11		13		15		17

				Q calc.								0		2		4		6		8		10		12		14		16														18		0		4		6		8		10		12		14		16												2		18		0		4		6		8		10		12		14		16		2														0		2		4		6		8		10		12		14		16

												1		3		5		7		9		11		13		15		17																1		3		5		7		9		13		15		17														19		1		3		5		7		11		13		15		19		1														1		3		5		7		9		11		13		15		17

				Q comp.										0		2		4		6		8		10		12		14		16														18		0		4		6		8		10		12		14		16												2		18		0		4		6		8		10		12		14		16		2														0		2		4		6		8		10		12		14		16

														1		3		5		7		9		11		13		15		17																1		3		5		7		9		13		15		17														19		1		3		5		7		11		13		15		19		1														1		3		5		7		9		11		13		15		17

				final Q																												F																														F																F																F																														F



				update				6		8		10		12		14		16																0		2		4		6		8		10		12		14		16														18		0		4		6		8		10		12		14		16		2		18		0										2		4		6		8		10		12		14		16																0		2		4		6		8		10		12		14		16

								5		7		11		13		15		19																1		3		5		7		9		11		13		15		17														1		3		5		7		9		13		15		17		19		1														1		3		5		7		11		13		15		19																1		3		5		7		9		11		13		15		17

				write				4		6		8		10		12		14		16																0		2		4		6		8		10		12		14		16														18		0		4		6		8		10		12		14		16		2		18		0										2		4		6		8		10		12		14		16																0		2		4		6		8		10		12		14		16

								3		5		7		19		11		13		15																1		3		5		7		9		11		13		15		17														1		3		5		7		9		13		15		17		19		1														1		3		5		7		19		11		13		15																1		3		5		7		9		11		13		15		17

								0		1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17		18		19		20		21		22		23		24		25		26		27		28		29		30		31		32		33		34		35		36		37		38		39

						1		0				0				0				0				0				0				0				0				0				0				0				0				0				0				0				0				0				0

						2				0				0				0				0				0				0				0				0				0				0				0				0				0				0				0				0				0				0

						3				233		71								36				235				6				180				83				98						65		147										20				172		208						27		130				0				0

						4		234						71								36				235				6				180				83				98		66						147						21				173						208		28						130				0				0

						5				111		86						139																																																														0				0

						6		112						86		140																																																																		0				0

						7						129						214				34		195				121				80				24						168						242						122				195		158				160				63				0												0

						8								129		215				35						195				121				80				24		169										242		123				196						158				160				63				0												0

								1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17		18		19		20		21		22		23		24		25		26		27		28		29		30		31		32		33		34		35		36		37		38		39		40		41		42		43		44		45		46		47		48		49		50		51		52		53		54		55		56		57		58		59		60		61		62		63		64		65		66		67		68		69		70		71		72		73		74		75		76		77		78		79		80		81		82		83		84		85		86		87		88		89		90		91		92		93		94		95		96		97		98		99		100		101		102		103		104		105		106		107		108		109		110		111		112		113		114		115		116		117		118		119		120		121		122		123		124		125		126		127		128		129		130		131		132		133		134		135		136

								single cores of P=256  (Parallelism = 256)

				read				0		2		8		10		12		14		18		20		26		28		30		32		34		4		6		16		22		24		1		3		5		7		9		11		13		15		17		19		21		23		25		27		29		31		33		35		2		6		8		10		12		14		16		20		28		32		34		36		1		19		25		27		31		0		3		7		9		11		13		15		17		18		21		24		26		29		30		33		35		37		1		2		5		38		36		4		39		0		3		37		7		8		10		12		14		17		20		23		25		26		28		30		32		2		5		38		6		9		11		13		15		16		21		22		24		27		29		31		33		39		3		4		0		2		8		10		12		14		18		20		26		28		30		32		34		4		6		16		22		24

				SN				4		0		2		8		10		12		14		18		20		26		28		30		32		34		4		6		16		22		24		1		3		5		7		9		11		13		15		17		19		21		23		25		27		29		31		33		35		2		6		8		10		12		14		16		20		28		32		34		36		1		19		25		27		31		0		3		7		9		11		13		15		17		18		21		24		26		29		30		33		35		37		1		2		5		38		36		4		39		0		3		37		7		8		10		12		14		17		20		23		25		26		28		30		32		2		5		38		6		9		11		13		15		16		21		22		24		27		29		31		33		39		3		4		0		2		8		10		12		14		18		20		26		28		30		32		34		4		6		16		22		24

				Q calc.				3		4		0		2		8		10		12		14		18		20		26		28		30		32		34		4		6		16		22		24		1		3		5		7		9		11		13		15		17		19		21		23		25		27		29		31		33		35		2		6		8		10		12		14		16		20		28		32		34		36		1		19		25		27		31		0		3		7		9		11		13		15		17		18		21		24		26		29		30		33		35		37		1		2		5		38		36		4		39		0		3		37		7		8		10		12		14		17		20		23		25		26		28		30		32		2		5		38		6		9		11		13		15		16		21		22		24		27		29		31		33		39		3		4		0		2		8		10		12		14		18		20		26		28		30		32		34		4		6		16		22		24

				Q comp.				39		3		4		0		2		8		10		12		14		18		20		26		28		30		32		34		4		6		16		22		24		1		3		5		7		9		11		13		15		17		19		21		23		25		27		29		31		33		35		2		6		8		10		12		14		16		20		28		32		34		36		1		19		25		27		31		0		3		7		9		11		13		15		17		18		21		24		26		29		30		33		35		37		1		2		5		38		36		4		39		0		3		37		7		8		10		12		14		17		20		23		25		26		28		30		32		2		5		38		6		9		11		13		15		16		21		22		24		27		29		31		33		39		3		4		0		2		8		10		12		14		18		20		26		28		30		32		34		4		6		16		22		24

				update				26		28		30		32		38		4		6		16		22		24		11		13		15		21		27		29		31		33		39		3				0		2		4		6		8		10		12		14		16		18		20		22		24		26		28		30		32		34		1		19		25		27		31		3		5		7		9		11		13		15		17		21		23		29		33		35		1		2		6		8		10		12		14		16		19		20		25		27		28		31		32		36		34		0		3		37		7		9		11		13		15		17		18		21		24		26		29		30		33		35		2		5		38		1		36		4		39		0		3		37		2		5		7		8		10		12		14		17		20		23		25		26		28		30		32		38		4		6		16		22		24		11		13		15		21		27		29		31		33		39		3				0		2		4		6		8		10		12		14		16		18		20		22		24		26		28		30		32		34

				write				25		26		28		30		32		38		4		6		16		22		24		11		13		15		21		27		29		31		33		39		3				0		2		4		6		8		10		12		14		16		18		20		22		24		26		28		30		32		34		1		19		25		27		31		3		5		7		9		11		13		15		17		21		23		29		33		35		1		2		6		8		10		12		14		16		19		20		25		27		28		31		32		36		34		0		3		37		7		9		11		13		15		17		18		21		24		26		29		30		33		35		2		5		38		1		36		4		39		0		3		37		2		5		7		8		10		12		14		17		20		23		25		26		28		30		32		38		4		6		16		22		24		11		13		15		21		27		29		31		33		39		3				0		2		4		6		8		10		12		14		16		18		20		22		24		26		28		30		32		34

				row1

				row2

				row3

				row4

				row5

				row6

				row7

				row8





Code-Z(Code Rate = 0.33)

		ZTE R1-88; single core Z=512; code rate 1/3 (0.33333); 34 rows; 

		cycle count:						1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17		18		19		20		21		22		23		24		25		26		27		28		29		30		31		32		33		34		35		36		37		38		39		40		41		42		43		44		45		46		47		48		49		50		51		52		53		54		55		56		57		58		59		60		61		62		63		64		65		66		67		68		69		70		71		72		73		74		75		76		77		78		79		80		81		82		83		84		85		86		87		88		89		90		91		92		93		94		95		96		97		98		99		100		101		102		103		104		105		106		107		108		109		110		111		112		113		114		115		116		117		118		119		120		121		122		123		124		125		126		127		128		129		130		131		132		133		134		135		136		137		138		139		140		141		142		143		144		145		146		147		148		149		150		151		152		153		154		155		156		157		158		159		160		161		162		163		164		165		166		167		168		169		170		171		172		173		174		175		176		177		178		179		180		181		182		183		184		185		186		187		188		189		190		191		192		193		194		195		196		197		198		199		200		201		202		203		204		205		206		207		208		209		210		211		212		213		214		215		216		217		218		219		220		221		222		223		224		225		226		227		228		229		230		231		232		233		234		235		236		237		238		239		240		241		242		243		244		245		246		247		248		249		250		251		252		253		254		255		256		257		258		259		260		261		262		263		264		265		266		267		268		269		270		271		272		273

		LLR proc row idx						1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1										2		2		2		2		2		2		2		2		2		2		2		2		2		2		2		2		2								3		3		3		3		3		4		4		4		4		4		4		4		4		4		4		4		4		4		4		4		4				5		5		5		5		5		5		5		5		5		5														6		6		6		6		6		6		6		6						7		7		7		7		7		7		7		7				8		8		8		8		8		8		8		8		9		9		9		9		9		9		9		9						10		10		10		10		10		10		10				11		11		11		11		11		11				12		12		12		12		12		12		12				13		13		13		13		13		13						14		14		14		14		14		14						15		15		15		15		15		16		16		16		16		16		16						17		17		17		17		17				18		18		18		18		18						19		19		19		19		19						20		20		20		20		20				21		21		21		21		21				22		22		22		22		22				23		23		23		23		23		24		24		24		24		24		24		25		25		25		25				26		26		26		26		26				27		27		27		27		27						28		28		28		28		28						29		29		29		29		30		30		30		30		31		31		31		31		31						32		32		32		32						33		33		33		33		34		34		34		34		34

				read				0		1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17										18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17								2		19		18		0		1		3		4		5		6		7		8		11		10		12		13		14		15		16		1		2		19						0		9		20		1		5		8		11		12		15														2		4		14		21		0		1		5		12						17		22		8		0		2		5		12		14				1		6		9		23		0		2		5		12		24		10		14		17		8		0		2		5						7		12		25		0		2		5		14				1		3		6		26		12		14				0		5		15		27		1		3		12				2		11		17		28		0		1						4		6		29		0		2		11						5		18		30		0		11		2		8		13		17		31		0						14		16		32		0		2				1		5		9		33		2						0		6		34		1		9						8		16		35		0		6				2		12		18		36		0				5		10		17		37		0				15		16		18		38		0		2		5		9		15		39		0		1		8		16		40				10		18		41		0		1				13		17		16		42		0						6		11		43		0		16						2		3		44		0		1		7		18		45		46		0		2		6		12						1		4		47		2						10		18		48		1		0		2		7		16		49

				SN						0		1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17										18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17								2		19		18		0		1		3		4		5		6		7		8		11		10		12		13		14		15		16		1		2		19						0		9		20		1		5		8		11		12		15														2		4		14		21		0		1		5		12						17		22		8		0		2		5		12		14				1		6		9		23		0		2		5		12		24		10		14		17		8		0		2		5						7		12		25		0		2		5		14				1		3		6		26		12		14				0		5		15		27		1		3		12				2		11		17		28		0		1						4		6		29		0		2		11						5		18		30		0		11		2		8		13		17		31		0						14		16		32		0		2				1		5		9		33		2						0		6		34		1		9						8		16		35		0		6				2		12		18		36		0				5		10		17		37		0				15		16		18		38		0		2		5		9		15		39		0		1		8		16		40				10		18		41		0		1				13		17		16		42		0						6		11		43		0		16						2		3		44		0		1		7		18		45		46		0		2		6		12						1		4		47		2						10		18		48		1		0		2		7		16		49

				Q calc.								0		1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17										18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17								2		19		18		0		1		3		4		5		6		7		8		11		10		12		13		14		15		16		1		2		19						0		9		20		1		5		8		11		12		15														2		4		14		21		0		1		5		12						17		22		8		0		2		5		12		14				1		6		9		23		0		2		5		12		24		10		14		17		8		0		2		5						7		12		25		0		2		5		14				1		3		6		26		12		14				0		5		15		27		1		3		12				2		11		17		28		0		1						4		6		29		0		2		11						5		18		30		0		11		2		8		13		17		31		0						14		16		32		0		2				1		5		9		33		2						0		6		34		1		9						8		16		35		0		6				2		12		18		36		0				5		10		17		37		0				15		16		18		38		0		2		5		9		15		39		0		1		8		16		40				10		18		41		0		1				13		17		16		42		0						6		11		43		0		16						2		3		44		0		1		7		18		45		46		0		2		6		12						1		4		47		2						10		18		48		1		0		2		7		16		49

				Q comp.										0		1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17										18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17								2		19		18		0		1		3		4		5		6		7		8		11		10		12		13		14		15		16		1		2		19						0		9		20		1		5		8		11		12		15														2		4		14		21		0		1		5		12						17		22		8		0		2		5		12		14				1		6		9		23		0		2		5		12		24		10		14		17		8		0		2		5						7		12		25		0		2		5		14				1		3		6		26		12		14				0		5		15		27		1		3		12				2		11		17		28		0		1						4		6		29		0		2		11						5		18		30		0		11		2		8		13		17		31		0						14		16		32		0		2				1		5		9		33		2						0		6		34		1		9						8		16		35		0		6				2		12		18		36		0				5		10		17		37		0				15		16		18		38		0		2		5		9		15		39		0		1		8		16		40				10		18		41		0		1				13		17		16		42		0						6		11		43		0		16						2		3		44		0		1		7		18		45		46		0		2		6		12						1		4		47		2						10		18		48		1		0		2		7		16		49

				update																																														0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17		2		11								18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		1		2		19		18		0		17						1		5		8		11		12		15		2		3		4		6		7		10		13		14		16		19		0		1		5		12		8		9		11		15		20		0		2		5		12		14		1		4		21						0		2		5		12		14		17		22		8				0		2		5		1		6		9		12		23		0		2		5		14		8		10		17		24				12		14		0		2		5		7		25		1		3		12		6		14		26						0		1		3		5		12		15		27		0		2		11		1		17		28						0		11		2		4		6		29				0		5		11		18		30				0		2		8		13		17		31				2		0		14		16		32				1		9		2		5		33						0		6		1		9		34						0		6		8		16		35				0		2		12		18		36				0		5		10		17		37				0		15		16		18		38				0		2		5		9		1		15		39		8		16		40		0		1		10		18		41				0		16		13		17		42						0		6		11		16		43				0		2		3		44		1		7		18		45				2		6		12		46		0				1		2		4		47						1		10		18		48				0		2		7		16		49

				write																																																0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		17		2		11								18		0		1		3		4		5		6		7		8		9		10		12		13		14		15		16		1		2		19		18		0		17						1		5		8		11		12		15		2		3		4		6		7		10		13		14		16		19		0		1		5		12		8		9		11		15		20		0		2		5		12		14		1		4		21						0		2		5		12		14		17		22		8				0		2		5		1		6		9		12		23		0		2		5		14		8		10		17		24				12		14		0		2		5		7		25		1		3		12		6		14		26						0		1		3		5		12		15		27		0		2		11		1		17		28						0		11		2		4		6		29				0		5		11		18		30				0		2		8		13		17		31				2		0		14		16		32				1		9		2		5		33						0		6		1		9		34						0		6		8		16		35				0		2		12		18		36				0		5		10		17		37				0		15		16		18		38				0		2		5		9		1		15		39		8		16		40		0		1		10		18		41				0		16		13		17		42						0		6		11		16		43				0		2		3		44		1		7		18		45				2		6		12		46		0				1		2		4		47						1		10		18		48				0		2		7		16		49

		LLR write row idx																																																		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1								2		2		2		2		2		2		2		2		2		2		2		2		2		2		2		2		3		3		3		3		3		2						4		4		4		4		4		4		4		4		4		4		4		4		4		4		4		4		5		5		5		5		5		5		5		5		5		6		6		6		6		6		6		6		6						7		7		7		7		7		7		7		7				8		8		8		8		8		8		8		8		9		9		9		9		9		9		9		9				10		10		10		10		10		10		10		11		11		11		11		11		11						12		12		12		12		12		12		12		13		13		13		13		13		13						14		14		14		14		14		14				15		15		15		15		15				16		16		16		16		16		16				17		17		17		17		17				18		18		18		18		18						19		19		19		19		19						20		20		20		20		20				21		21		21		21		21				22		22		22		22		22				23		23		23		23		23				24		24		24		24		25		24		24		25		25		25		26		26		26		26		26				27		27		27		27		27						28		28		28		28		28				29		29		29		29		30		30		30		30				31		31		31		31		31				32		32		32		32						33		33		33		33				34		34		34		34		34






image1.png

image2.png

