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Introduction
In RAN1#88, the following agreement was reached:
Agreement: 
· Number of base graphs for eMBB is FFS between 1 and 2
· Evaluate the potential gains from 2 base-graphs compared to a single base-graph until RAN1#88bis

In this contribution, we present two slightly updated base graphs compared to the design presented in [1]. We have also optimized the code for a higher number of lifting sizes than in [1].
Description of proposed LDPC codes
We consider a family of rate-compatible LDPC codes based on protographs, which has been described in detail in our previous contribution [1]. The basic structure of the parity check matrix (PCM) is illustrated in Figure 1. The first 2 × Z systematic bits are always punctured (the set of bits corresponding to the yellow columns of the PCM), a structure that has been shown to reduce the threshold of the code [2]. Some of the remaining systematic bits are always transmitted, while some of them may be shortened if an information block length Ktx, with Ktx<K, is desired, where K is the native information block length of the parity check matrix (PCM). The first Mb×Z parity bits, as well as the bits corresponding to one or two degree one columns (the set of bits corresponding to the orange parity bit columns and a few green parity bit columns illustrated in Figure 1), gives the highest rate code. The rate may be reduced by transmitting additional parity bits from the incremental redundancy part, as described by the rightmost part of the matrix. In case of shortening, or a desired code rate higher than the highest design rate, some of the parity bits (orange) can be punctured. The rate-matching algorithm is described in detail in [3].
Check-nodes connected to the variable-nodes of the incremental redundancy part that are not transmitted can be deactivated when decoding to reduce complexity.
[image: ]
[bookmark: _Ref458797878]Figure 1. Illustration of LDPC code structure.

The LDPC codes considered here are quasi-cyclic protograph-based LDPC codes. Quasi-cyclic parity-check matrices are partitioned into square sub-blocks (sub-matrices) of size Z × Z. These submatrices are either cyclic-permutations of the identity matrix or null submatrices. The cyclic-permutation matrix Pi is obtained from the Z × Z identity matrix by cyclically shifting the columns to the right by i elements. The matrix P0 is the Z × Z identity matrix. Quasi-cyclic LDPC codes are conveniently described through a base matrix, which is a matrix where each integer i denotes the cyclic-permutation matrix Pi. Entries with i = -1 in the matrix denote null (zero) submatrices. The set of proposed LDPC base graphs is described in Table 1.
We consider two base graphs because of the improved hardware efficiency that may be achieved. Further details on the benefits of using two base graphs are presented in [4] and [5]. 
For each base graph, a specific parity-check matrix is obtained by selecting a lifting size Z with a corresponding base matrix, and replacing each entry with the corresponding Z × Z matrix. The PCM with exactly the desired code rate and information block length may then be constructed from the PCMs described in Table 1 through rate matching [3]. The parameters shown in Table 1 are listed below, without considering the effect of rate matching.

· Kb,max is the maximum number of information nodes in the base graph.
· Kb,min is the minimum number of information nodes in the base graph, after shortening is applied. The maximum number of bits that can be shortened is therefore (Kb,max - Kb,min ) * Z.
· Kmax is the maximum number of information bits supported.
· Kmin is the minimum number of information bits supported after shortening is applied.
· Ndeg1 is the number of degree-1 variable nodes included in the parity-check matrix with the highest rate.
· Rmax is the maximum code rate supported.
· Rmin is the minimum code rate supported.
· The Z values shown in the table are the Z values for which the base graph can be lifted. 

Table 1	LDPC code parameters
	
	Kb,max
	Kb,min
	Kmax
	Kmin
	Ndeg1
	Rmax
	Rmin
	Z

	Base graph 1
	32
	25
	8192
	176
	2xZ bits
	8/9
	1/4*
	Lift 1: 8, 10, 12, 14
Lift 2: 16, 20, 24, 28
Lift 3: 32, 40, 48, 56
Lift 4: 64, 80, 96, 112
Lift 5: 128, 160, 192, 224, 256

	Base graph 2
	10
	7
	2560
	70
	Z bits
	2/3
	1/5
	Lift 1: 8, 10, 12, 14
Lift 2: 16, 20, 24, 28
Lift 3: 32, 40, 48, 56
Lift 4: 64, 80, 96, 112
Lift 5: 128, 160, 192, 224, 256


* Note that for Base graph 1, for Kmax=8192 and K values close to it, the code extension stops at Rmin=1/3. For smaller K values, the code extension continues to Rmin=1/4.

[bookmark: _Ref462908149]Lifting and Granularity of Code Sizes
The base graphs are lifted with circulant matrices of size Z × Z. The lifting sizes Z for which the lifting has been optimized are specified in Table 1, where they are also grouped. The permutations of the circulant matrices are optimized for each group of Z values, here denoted by “Lift J”, separately for each group. 
The entries in the base graph that correspond to non-zero sub-blocks take values between 0 and , where  is the maximum Z in the lifting group. To generate the PCM   corresponding to smaller Z values, the following formula is used:

where  If an entry is larger than , this is equivalent to the right shift of the binary representation of  by  steps.
In terms of BLER performance, one could optimize a set of circulant matrices for each lifting size Z. However, to achieve a good tradeoff between BLER performance and hardware area efficiency, it is of importance to keep down the number of lifting sizes Z that the decoder must handle. 
To find a good tradeoff, we have considered the impact of shortening on BLER performance and based on this decided on the maximum number of variable nodes that may be shortened. A BLER increase is associated with the shortening, but by limiting the number of shortened variable nodes we also limit the BLER increase. With the shortening limited, the contiguous range of info block sizes k that can be achieved with a specific lifting size Z combined with rate matching is any integer in the range of: 

Given the allowed shortening, we have selected a set of lifting sizes Z that balances the need of covering a wide range of information block sizes and the need of not defining an excessive number of Z values. 
[bookmark: _GoBack]Simulation results and parity-check matrices
The parity-check matrices designed for NR that we propose here as well as simulation results are attached in the accompanying data sheet. Simulation results for eMBB with the sum-product algorithm, flooding schedule and running a fixed number of 50 decoding iterations are shown in the appendix for eMBB. 

Conclusions
In this contribution we have presented updated LDPC code designs, with slightly updated base graphs and new liftings.

[bookmark: _In-sequence_SDU_delivery]References
[bookmark: _Ref478133945]R1-1700108, “LDPC code design,“ Ericsson, January 2017.
[bookmark: _Ref462822492]D. Divsalar, S. Dolinar, C. R. Jones and K. Andrews, "Capacity-approaching protograph codes," in IEEE Journal on Selected Areas in Communications, vol. 27, no. 6, pp. 876-888, August 2009.
[bookmark: _Ref462910529]R1-1608876, “LDPC Code Performance with Rate Matching,” Ericsson.
[bookmark: _Ref478148175]R1-1704313, “Design Considerations for Smaller LDPC Codes,” Ericsson, April 2017.
[bookmark: _Ref478148178]R1-1704315, “Design Parameters and Implementation Considerations of LDPC Code,” Ericsson, April 2017.

Appendix – Simulation results
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