[bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: _Ref452454252]3GPP TSG-RAN WG1 Meeting #88	R1-1703101
Athens, Greece, 13th - 17th February 2017

Agenda item:		8.1.4.1
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:	Nokia, Alcatel-Lucent Shanghai Bell
Title:	Implementation aspects of LDPC design
Document for:		Discussion and Decision
1	Introduction
In RAN1 #NR Ad-Hoc meeting, several agreements related to implementing LDPC codes were agreed in order to fulfil eMBB requirements. Many companies had a relatively good understanding about the maximum code block size (CBS), and exact value to be selected near 8192 info bits.
Agreement:
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined for a H matrix are selected from the following set of {Kmax, Zmax} pairs:
· {8192, 256}, {8192, 512}, {8192, 1024},
· {FFS near 8192, 320}, {FFS near 8192, 384}
· The exact {Kmax, Zmax} pair to be selected from the above 5 at RAN1#88

In addition, there were several other agreements related to the evaluation criteria of the LDPC designs. BLER performance is the main criteria to evaluate different proposals.
Conclusion:
· Evaluations at BLER of a single code block = 1e-2 (for performance comparison between codes) and 1e-4 (for the purpose of comparing the error floor performance of the codes)
· (Note that this does not preclude other comparison criteria)

Implementation complexity and latency were identified as other comparison criteria’s for LDPC designs. In particular, Ran1 agreed on the following.
Conclusion:
· At least the following criteria are considered for LDPC design comparison in addition to BLER performance
· Implementation complexity
· Latency
· discuss details in the email discussion.
· Companies are encouraged to provide at least the following for the base matrix for the considered code rates:
· Zmax
· Total number of edges
· Maximum row weight
· Maximum column weight
· FFS if/how to define and compare numbers of (quasi) layers

In this contribution, we discuss implementation aspects of the proposed LDPC design in [1] by considering different decoder architectures. Also, we compare different base graphs to identify pros and cons related to compact design, extended design, quasi row-orthogonality, and row-orthogonality.
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK13][bookmark: OLE_LINK14]2	Hardware throughputs
Here, the discussion is mainly divided into several sub-sections considering decoder architectures, comparison of decoding throughputs of base graphs proposed by several contributions, and provide additional implementation details for the proposed LDPC design in [1]. In Ran1 #NR Ad-Hoc, companies proposed different base matrices, where some are optimized for row-parallel decoding while others are mostly assuming the block-parallel decoding. The following discussion will be helpful to understand the throughputs of each base matrix under different decoding architectures.
2.1 	Block-parallel decoding
In Ran1 #NR Ad-Hoc meeting, several companies [2-5] provided decoder throughput analysis considering block-parallel decoding architecture. In [2], LDPC decoding throughput (of block-parallel architecture was given as,

	
	
	(1)

where is the number of ones in the proto-matrix, is the decoding iteration, is the clock frequency, and is the information block size. However, more generic representation of the decoding throughput of block-parallel decoding, also given in [3], [4], and [5] contributions, can be the following,
	
	
	(2)

where the N represents the coded block size, is the average variable node degree, and represent the parallelism level which can be lower or bigger than the sub-matrix dimension (Z). When we have multiple cores each with parallelism, the throughput calculations become,

	
	
	(3)

Furthermore, in [3], authors highlighted that conflict resolution is needed with multiple cores when there are conflicts in the base graph. For example, when core A and B are processing two circulants within the same column but two adjacent rows of a base graph, the core A can wait (up to p-1 clock cycles, where p is a CNU pipeline length) until core B finishes its work. They provide the throughput calculation as

	
	
	
	(4)

where is the CNU pipeline length and 	denotes the number of conflict layers in the base graph.

In general, equation (4) shows the generic approach for evaluating throughput for block-parallel architecture, where determine the trade-off between throughput and performance, while 	 can be a variable depending on the number of cores we used for a given base graph.

2.2 	Row-parallel decoding
Similar to the block-parallel decoding, we can find the decoder throughputs and latencies when using a row-parallel decoder architecture. In general, decoder throughput can be calculated as [2],
	
	
	(5)

‘
where L is the number of layers used for layered decoding.

In [4], a similar equation was provided to calculate decoding throughput.
	
	
	(6)

where denotes the scaling factor for critical path, which can be normalized by the summarized stages of route networks, shift networks and CNUs. denotes the processing clocks for CNU updating plus memory reading and writing at each decoding step. In many cases, P greater than or equal to Z, and end-up considering the equation (5) instead of (6).
2.3 	Comparing different base graphs
In this sub-section, we discuss decoder throughput for several codes which are proposed in Ran1 #NR Ad-Hoc. Table I summarize the equations we could use for decoder throughput comparison and with their applicability to different base graphs.
Table I: Applicability of different equations in the decoder throughput calculations.
	
	
	
	

	
	Single core
	Multi Core
	Single core
	Multi core
	Row-Parallel

	Throughput
	
	
	
	
	

	Code – E [6]
	Valid
	Conflicts after 5 cores.
	Valid
	Conflicts increase.
	Valid

	Code – N [1]
	Valid
	No conflicts with 20 cores.
	Valid
	Conflicts increase.
	Valid

	Code – Z [4]
	Valid
	Conflicts after 5 cores.
	Valid
	Conflicts increase.
	Valid

	Code – S [2]
	Valid
	No conflicts with 20 cores.
	Valid
	Conflicts increase.
	Valid

Figure1 illustrates throughputs of different base graphs with row-parallel decoder architecture. We assume 1 GHz of clock frequency with 8192 info block size and 15 iterations. Code-Z has a higher throughput at 8/9 due to the compact design they propose. However, at lower to moderate code rates, having row-orthogonality in the base graphs design (Code-N and Code-S) provide better throughputs than the rest.

Figure 1: Throughputs with row-parallel decoder architecture
Next, in Figure 2, we evaluate same base graphs with block-parallel decoding. Here, we consider multiple cores such that it gives a similar throughout compared to row-parallel decoding. We consider K = 8192, f = 1 GHz, P = Zmax, where code-Z has P = 512 while all other codes have P = 256. However, we limit the number of cores to 10 with code-Z as it already assumes higher order parallelism in circulant domain. The number of conflicts in the base graphs also taken into account when calculating the throughputs and we set p = 6 in equation (4). In Figure 2, we can observe that having a row orthogonal structure (Code-N and Code-S) can provide good throughputs even with block-parallel decoding while other base graphs suffer due to conflicts that arise due to lack of orthogonality between rows of the base matrix.

Figure 2: Throughputs with row-parallel decoder architecture

During Ran1 #NR Ad-Hoc meeting, values of 256, 512, and 1024 were identified as the largest shift size Zmax to support 8192 bits of Kmax,. When Zmax becomes large, the base graph becomes more compact and reduce the flexibility of optimizing code for good performance. As hardware throughput mainly depends on the parallelism, which can be much higher than the Zmax, and there is no point of highlighting benefits of large Zmax in terms of hardware throughput as all other designs can also have the same parallelism when they perform block-parallel decoding.

Observation 1: In block-parallel decoding, compact design or extended design of the base graphs does not have significant hardware throughput difference when using the same parallelism.

When the base matrix has a compact design without row-orthogonality, we see that there is no point of increasing the number of cores as it often leads to conflicts. After a certain number of cores, the hardware effort that we put on to have multiple cores tends to inefficient as throughput gains we get can be marginal. Let’s consider equation (4) to discuss this further. In (4), increasing cannot guarantee an increase in the hardware throughput as may also increase with . For example, equals 2 when using ten cores with Code – Z, and it will be much higher when for more than 10 cores. Therefore, overall throughout increment can be marginal.

Observation 2: Increasing number of cores is not beneficial to improve the block-parallel decoding throughput for quasi-row orthogonal base matrices. Conflicts increase with the number of cores

Finally, when we have a compact base matrix, the flexibility or optimizing the code for performance is very limited and can lead to performance losses when providing finer granularity and very low error rates. Further evaluations on error floor and flexibility on block sizes should be investigated if this is not the case. Considering most of these aspects, we see that {8192,256} is a good combination for NR eMBB maximum code block and shift dimension.

Proposal 1: {8192, 256} is the good combination for Kmax and Zmax considering flexibility it provides to optimize the code while having good throughputs under both block-parallel and row-parallel architectures.

2.4 Implementation aspects for proposed codes in [1]
In [1], we provide details of the LDPC design for NR eMBB data channel. Two base matrices are proposed covering lower and larger block sizes regions of eMBB. Shorter block base graph is not critical to determine the hardware dimension as can always support with the same hardware provisioning of the larger base graph. Therefore, following details reflect mainly the base graph that supports larger block sizes. Table II shows the parameters that Ran1 encouraged to provide in order to evaluate implementation aspects of different base graphs.
Table II: Key parameters for hardware provisioning of the proposed base matrix
	Code rate
	
	Total number of edges
	Max row weight
	Max column weight
	Layers

	1/3
	256
	440
	15
	22
	16

	1/2
	256
	283
	11
	22
	12

	2/3
	256
	197
	8
	22
	9

	3/4
	256
	163
	7
	22
	8

	8/9
	256
	113
	5
	22
	6

Next, we evaluate hardware throughputs of the proposed codes considering block-parallel decoding. Figure 3 shows the throughput with different code rate when assuming different cores and parallelism sizes. We assume 1 GHz clock frequency and 8192 info block size. No conflicts are visible in the proposed base graph and scalable to support different data rates.

	
	

	(a)
	(b)

Figure 3: Block-parallel decoding throughput vs Code rate (a) with different cores. P = 256. (b) with different parallelism for single core

Figure 4: Row-parallel versus block-parallel throughputs with clock frequency.

In Figure 4, we compare row-parallel and block-parallel decoding architectures for the proposed code in [1]. We assumed block-parallel decoding with parallelism P = 256, and compared with the row-parallel decoding throughputs. At least twenty cores are required with block-parallel decoding to have similar throughout as to the row-parallel decoder. More importantly, the code does not have conflicts even with 20 cores and provide efficient implementation throughputs with both architectures. When 20 Gbps is required to support only at very high code rates, the clock can be reduced while much larger clock frequency is required to support 20 Gbps with rate 1/3.
Observation 3: Proposed LDPC codes can provide efficient implementation throughputs with both row-parallel and block-parallel architectures.
Proposal 2: Row orthogonality should be considered as the design criteria for the base graph supporting Kmax.
4	Conclusion
In this contribution, we discussed implementation aspects related to the LDPC designs and we have following observations and proposals.
Observation 1: In block-parallel decoding, compact design or extended design of the base graphs does not have significant hardware throughput difference when using the same parallelism.

[bookmark: _GoBack]Observation 2: Increasing number of cores is not beneficial to improve the block-parallel decoding throughput for quasi-row orthogonal base matrices. Conflicts increase with the number of cores

Observation 3: Proposed LDPC codes can provide efficient implementation throughputs with both row-parallel and block-parallel architectures.

Proposal 1: {8192, 256} is the good combination for Kmax and Zmax considering flexibility it provides to optimize the code while having good throughputs under both block-parallel and row-parallel architectures.

Proposal 2: Row orthogonality should be considered as the design criteria for the base graph supporting Kmax.

References
[1] R1-1703100	“LDPC design for eMBB” Nokia, ASB
[2] R1-167889 “Design of Flexible LDPC Codes” Samsung
[3] R1-1700093	“Implementation aspects of LDPC codes”	Huawei, HiSilicon
[4] R1-1700246 “Complexity, throughput and latency analysis on LDPC codes for eMBB”	ZTE, ZTE Microelectronics
[5] R1-1610139 “Efficient Channel Coding Implementations for EMBB” Qualcomm Incorporated
[6] R1-1700108 “LDPC Code Design” Ericsson

Code-E row-parallel	 1/3	 1/2	 2/3	 3/4	 8/9	8.2747474747474747	16.062745098039215	30.340740740740742	42.01025641025641	91.022222222222226	Code-N row-parallel	 1/3	 1/2	 2/3	 3/4	 8/9	34.130000000000003	45.51	60.680999999999997	68.27	91.02	Code-Z row-parallel	16.062745098039215	32.125490196078431	60.681481481481484	78.019047619047626	182.04444444444445	Code-S row-parallel	34.133333333333333	45.511111111111113	60.681481481481484	68.266666666666666	91.022222222222226	Code rate

Throuhgput (Gbps)

Code-E block-parallel with 20 cores	 1/3	 1/2	 2/3	 3/4	 8/9	13.653333333333332	17.066666666666666	26.006349206349206	28.743859649122808	91.022222222222226	Code-N block-parallel with 20 cores	 1/3	 1/2	 2/3	 3/4	 8/9	24.824242420000001	39.009523809999997	54.613333330000003	78.019047619999995	91.022222220000003	Code-Z block-parallel with 10 cores	20.22716049382716	28.743859649122808	39.009523809523806	45.511111111111113	109.22666666666666	Code-S block parallel with 20 cores	24.824242424242424	39.009523809523806	54.61333333333333	68.266666666666666	91.022222222222226	Code rate

Throughput (Gbps)

Throughput with different cores

Core - 1	0.33333333333333331	0.5	0.66666666666666663	0.75	0.88888888888888884	1.2641975308641975	1.9859393939393939	2.8743859649122805	3.9863746958637472	5.1040498442367603	Core - 2	0.33333333333333331	0.5	0.66666666666666663	0.75	0.88888888888888884	2.528395061728395	3.9574879227053139	5.748771929824561	7.9149758454106278	10.11358024691358	Core - 3	0.33333333333333331	0.5	0.66666666666666663	0.75	0.88888888888888884	3.7925925925925927	5.9362318840579711	8.5333333333333332	11.872463768115942	15.170370370370371	Core - 4 	0.33333333333333331	0.5	0.66666666666666663	0.75	0.88888888888888884	5.05679012345679	7.9149758454106278	11.377777777777778	15.603809523809524	20.22716049382716	Core - 5	0.33333333333333331	0.5	0.66666666666666663	0.75	0.88888888888888884	6.2773946360153259	9.9296969696969697	14.371929824561404	19.504761904761903	24.824242424242424	Code rate

Throughput (Gbps)

Throughput with different parallelism

P = Zmax	0.33333333333333331	0.5	0.66666666666666663	0.75	0.88888888888888884	1.2641975308641975	1.9859393939393939	2.8743859649122805	3.9863746958637472	5.1040498442367603	P = 2*Zmax	0.33333333333333331	0.5	0.66666666666666663	0.75	0.88888888888888884	2.528395061728395	3.9574879227053139	5.748771929824561	7.9149758454106278	10.11358024691358	P = 4*Zmax	0.33333333333333331	0.5	0.66666666666666663	0.75	0.88888888888888884	5.05679012345679	7.9149758454106278	11.377777777777778	15.603809523809524	20.22716049382716	Code rate

Throughput (Gbps)

1/3 : row-parallel or 27 core block parallel	250	300	350	400	450	500	550	600	8.5333333333333332	10.24	11.946666666666665	13.653333333333334	15.360000000000001	17.066666666666666	18.773333333333333	20.48	1/2 : row-parallel or 23 core block parallel	250	300	350	400	450	500	550	600	11.377777777777778	13.653333333333332	15.928888888888888	18.204444444444444	20.48	22.755555555555556	25.031111111111112	27.306666666666665	2/3 : row-parallel or 23 core block parallel	250	300	350	400	450	500	550	600	15.170370370370371	18.204444444444444	21.238518518518518	24.272592592592591	27.306666666666668	30.340740740740742	33.374814814814819	36.408888888888889	3/4 : row-parallel or 19 core block parallel	250	300	350	400	450	500	550	600	17.066666666666666	20.48	23.893333333333331	27.306666666666668	30.720000000000002	34.133333333333333	37.546666666666667	40.96	8/9 : row-parallel or 20 core block parallel	250	300	350	400	450	500	550	600	22.755555555555556	27.306666666666665	31.857777777777777	36.408888888888889	40.96	45.511111111111113	50.062222222222225	54.61333333333333	Clock frequency (MHz)

Throughput (Gbps)

