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1 Introduction

In last RAN1 NR Ad-hoc meeting, support of π/2-BPSK modulation for DFT-s-OFDM was agreed and the following working assumption was promoted to the agreement [1].

Agreement:
· NR supports 0.5*pi BPSK modulation for DFT-s-OFDM
Working assumption:
· While using DFT-s-OFDM, 0.5*pi-BPSK modulation using DFT-S-OFDM with frequency domain spectrum shaping can be further considered at least for eMBB uplink data for up to 40GHz

· FFS

· The details of frequency domain spectrum shaping 

· This does not preclude the case where no spectrum shaping is needed

This contribution discusses PAPR/PAR/BLER performance evaluation results of π/2-BPSK modulation and/or frequency domain spectrum shaping (FDSS) for DFT-s-OFDM in NR uplink.
2 Performance Evaluation Results of FDSS

PAPR

We evaluated several CCDFs (complementary cumulative distribution functions) of PAPR (measured at sample level) for π/2-BPSK DFT-s-OFDM according to different FDSS coefficients. Detailed simulation parameters are shown in Annex-A.
From Figure 1, we can observe the followings:

Observation 1: FDSS can reduce PAPR significantly in cases of π/2-BPSK DFT-s-OFDM.

At 99.99% PAPR, FDSS has about 3dB gain against pure π/2-BPSK DFT-s-OFDM.
Observation 2: There exist orthogonal FDSS coefficients that give lower PAPR than RRC.
These coefficients can be found numerically under orthogonality constraint described in Annex-B.
Observation 3: PAPR can be further reduced by breaking orthogonality of FDSS, which can be trade-off between PAPR and BLER performances.
Non-equal-gain FDSS coefficients without excess BW must break orthogonality but their shaping can help to reduce PAPR further as shown in Figure 1 (Kaiser, Polynomial fitting).
The spectrum shaping function for the Kaiser window [2] is defined as:
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where β is an arbitrary real number that determines the shape of the window, and L is the length of window same as DFT size. I0(.) is the zeroth-order modified Bessel function of the first kind defined by:
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The polynomial fitting function is defined as:
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which is derived from numerical optimization by trading off PAPR minimization and self-interference caused by broken orthogonality. FDSS coefficients can be obtained from sampling p(x) by using following formulas:

[image: image4.png],    [image: image5.png].

In this approach, p(x) is not changed according to DFT size. We can adjust number of sampling points according to DFT size.
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Figure 1. PAPR CCDF comparison according to different FDSS coefficients for π/2-BPSK DFT-s-OFDM
BLER
We evaluated BLER for π/2-BPSK DFT-s-OFDM according to different FDSS coefficients. Detailed simulation parameters are shown in Annex-A.

From Figure 2, we can observe the following:

Observation 4: Compared to pure π/2-BPSK DFT-s-OFDM, FDSS without excess bandwidth has no SNR loss at 10% BLER.
This is because self-interference caused by broken orthogonality is not so big as noise power. Thus, at very low SNR range (limited coverage scenario), PAPR (or PA back-off) gain of FDSS can help coverage extension.
Proposal 1: Confirm the working assumption of FDSS as agreement.
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Figure 2. BLER comparison according to different FDSS coefficients for π/2-BPSK DFT-s-OFDM
3 Conclusion
In this contribution, we discussed performance evaluation results of FDSS for π/2-BPSK DFT-s-OFDM. The observations and proposal are as follows.
Observation 1: FDSS can reduce PAPR significantly in cases of π/2-BPSK DFT-s-OFDM.

Observation 2: There exist orthogonal FDSS coefficients that give lower PAPR than RRC.

Observation 3: PAPR can be further reduced by breaking orthogonality of FDSS, which can be trade-off between PAPR and BLER performances.

Observation 4: Compared to pure π/2-BPSK DFT-s-OFDM, FDSS without excess bandwidth has no SNR loss at 10% BLER.

Proposal 1: Confirm the working assumption of FDSS as agreement.
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5 Annex-A: Evaluation Parameters
	Parameters
	Values or Assumptions

	IFFT size
	1024

	Oversampling factor
	8

	DFT size (L)
	12

	FDSS size (K)
	12 (no excess bandwidth case) or 16 (excess bandwidth case)

	FDSS coefficients
	RRC: (not normalized, just relative values)

p1 = p16 = 0.1951, p2 = p15 = 0.5556, p3 = p14 = 0.8315, p4 = p13 = 0.9808,
p5 = p6 = … = p12 = 1

Kaiser window: (not normalized, obtained from S(l) with β=2.5)

p1 = p12 = 0.3040, p2 = p11 = 0.4825, p3 = p10 = 0.6595,
p4 = p9 = 0.8150, p5 = p8 = 0.9305, p6 = p7 = 0.9921
Polynomial fitting: (not normalized, obtained from sampling sqrt(p(x)))

p1 = p12 = 0.0755, p2 = p11 = 0.1402, p3 = p10 = 2214,
p4 = p9 = 0.3090, p5 = p8 = 0.3842, p6 = p7 = 0.4278

	Modulation
	π/2-BPSK

	OFDM subcarrier spacing
	15kHz

	Resource block size
	12 subcarriers x 14 OFDM symbols (same as in LTE)

	DMRS
	12 resource elements for each 4th, 11th OFDM symbol (same as in LTE)

	Channel model
	TDL-C with 300ns delay spread

	Channel estimation
	Practical (DMRS based)

	Noise variance estimation
	Practical (DMRS based)

	Number of information bits
	48

	Channel coding
	LTE Turbo codes, Max-Log-MAP, 6 iterations

	Carrier frequency
	4GHz

	UE velocity
	3km/h


6 Annex-B: Orthogonality condition on spreading and spectrum shaping matrix

In DFT-s-OFDM, PAPR depends on phase difference between neighboring data symbols as well as pulse shaping of data symbols. Phase rotation of data symbols, DFT-spreading, and frequency domain spectrum shaping can mathematically be explained as a new spreading matrix extended from DFT matrix as shown in Figure 2.

[image: image8.png]
Figure 2. Mathematical modeling of phase rotation, DFT-spreading, and FDSS in DFT-s-OFDM
Let us denote S to be the matrix obtained by removing phase shift term from Ŝ. Then, considering matched de-spreading at receiver, the orthogonality condition of S can be denoted as follows:
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The left hand side term of the above formula can be derived further as follows:
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Now the condition of spectrum shaping coefficients (pi) to maintain orthogonality of S can be summarized as follows:
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For example, if L=12, K=14, and N=128, the above condition can be illustrated as follows:
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If we consider symmetric spectrum shaping coefficients (like RRC), free variables are reduced to floor((K-L)/2). (In the above example, the number of free variable is reduced to one.) Thus, for some (K-L) configurations, the orthogonality condition can be summarized as Table 1.

Table 1. Orthogonality condition of spectrum shaping coefficients of some (K-L) configurations
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For example, in case of L=12, K=16, and N=128, the spectrum shaping coefficients can be illustrated as follows:
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