Page 1
[bookmark: OLE_LINK6][bookmark: OLE_LINK7]3GPP TSG RAN WG1 Meeting #88 	 R1-1702709
Athens, Greece, February 13 – 17 2017
[bookmark: Source]Agenda item:	8.1.4.1
Source: 	Intel Corporation
Title: 	Discussion on LDPC code design and properties
[bookmark: DocumentFor]Document for: Discussion
1. Introduction
In last Adhoc meeting, RAN1 made several agreements to progress LDPC code design. In this contribution, we provide discussions and views on maximum lifting size and block size, number of base graphs, as well as analysis of the throughput/latency/complexity.
2. Considerations on maximum lifting size and block size
The largest information block size supported by LDPC encoder Kmax and the largest shift size Zmax defined for a H matrix are to be selected from the following set of {Kmax, Zmax} pairs: {8192, 256}, {8192, 512}, {8192, 1024}, {FFS near 8192, 320}, {FFS near 8192, 384}.

Maximum lifting size
Maximum supported shift size (Zmax) has a two-fold effect on the overall LDPC performance/implementation. It affects the encoder/decoder throughput as well as latency through built-in parallelism.Typically larger shift size can imply lower latency. However, latency can also be further reduced by other techniques such as processing multiple check/variable nodes (of a base matrix) in parallel or using multiple separate decoders, etc. Thus, it is not strictly necessary to support very large shift sizes.
Very large values of Z (e.g. Zmax = 1024) may lead to very small (in number of rows/columns) parity-check matrix and many systematic bits puncturing for supporting Kmax ~8192, which can degrade the performance for block sizes being considered for NR (~8192 or smaller). For example, we simulated the code from [9] which supports Zmax of 1024, and it shows error- floor behavior above 1e-4 BLER for different rates, as shown in Figure 1. 25 iterations of layered BP is used for these simulations.
[image:]
Figure 1. BLER evaluation of LDPC design proposed in [9] and error floor behaviour for Z=1024.
Observation 1: LDPC design with supported Zmax=1024, shows error-floor behavior above 1e-4 BLER, for different rates for block size 8192.
Thus, it is necessary to carefully choose the pair Kmax, Zmax to avoid such error floors demonstrated with Zmax =1024, Kmax =8192. Our preference is to support a Zmax value (e.g. from {256,320,384}) that can provide the right range of tradeoffs in code design, performance and implementation complexity. While supporting higher values, e.g. 512, is also feasible, clearly a Zmax of 1024 seems too large, causing undesirable performance losses. For better understanding on the maximum supported shift size, assessments of throughput and latency are also necessary as shown in next section.
3. Discussions on throughput and latency
Structured LDPC codes also support layered belief propagation decoding algorithm which can converge faster (in number of iterations) relative to standard belief propagation decoder. In the decoder, the check node update (CNU) can be performed on each layer (or a block row) at a time though formal definition of layer might be quite closely tied to implementation rather than to a parity-check matrix structure. If further reduced latency is desired, the CNU can be performed on multiple layers simultaneously. Thus, the LDPC code design can be flexible enough to allow the decoder to choose the desired amount of parallelism based on the desired throughput/latency requirements.
3.1. Throughput
Based on different PCM designs (particularly, the corresponding base matrices), we compute and tabulate throughput values, for different decoding architectures, for the maximum information block of ~8192 bits, and for rates 1/3 and 8/9. For simplicity, we consider 10 decoder iterations and compute the throughput as the ratio of number of information bits to the total number of cycles for decoding, which is dependent on architecture, pipelining, parity-check matrix, etc. Note the numbers are simplified to illustrate the various tradeoffs while it is expected differences may exist considering pipelining delays/optimizations, performance tradeoffs, etc. Following are some examples:
1. Block parallel: The number of cycles per iteration roughly equals the number of base graph edges.
2. Row parallel: The number of required cycles equals the number of base graph rows.
3. Semi-row parallel or block parallel with multiple (m) edges per cycle: The number of cycles per iteration equals to, i.e., is the number of required cycles for the corresponding check node. Since m can be variable, there are several different ways of calculating the throughput, and hence we do not show this explicitly in the comparison, though it should be clear that the throughput would be between that of block parallel and row parallel decoders.
4. Row parallel with multiple orthogonal rows combined per cycle: The number of cycles per iteration would be equal to the number of PCM blocks of orthogonal rows, i.e., number of effective rows. The average number of cycles per check node would be less than one.
· Note that there is also a possibility of supporting semi-row orthogonality (or Quasi-row-orthogonality), including the PCM in [2] which supports pairwise semi-row-orthogonality by using 2x2 building blocks. In order to handle the conflict in the first 2x2 block, and merge every two rows into a layer, the approach in [8] can be considered, though the actual benefits in implementation would depend upon the degree of orthogonality, which may not be very clearly seen from the parity-check matrix structure. Also, given the row-degree becomes small in the SPC-extension of the PCM, semi-row-orthogonality becomes more prominent naturally without any special design effort. In other words, it is a bit unclear to define semi-row-orthogonality as a property in designing matrices with a particular impact on throughput and latency.
We note that the designs in [10] and [11] have considered full orthogonality between multiple rows in a block. As a result, the row weights are smaller on average, which can cause some performance degradation, but it allows large throughputs for lower code rates.
Tables 1 and 2 show the throughput values calculated for rate-1/3 and rate-8/9 respectively. Since different proponents use different maximum lift values, for fair comparison, we normalize the throughputs to reflect the variation in lift sizes. For example, one edge with Zmax = 512 would be equivalent to two edges with Zmax = 256.

Table 1. Throughput values calculated based on different proposed PCMs, for rate 1/3.
	Design:
	An example PCM (attached)
	Intel, R1-1700383 base matrix
	Intel, R1-1610377
	R1-167889 [10]
	R1-1700108
	R1-1610137
	R1-1701028 [11]
	R1-1700092

	matrix size
	66x98
	66x98
	49x73
	66x98
	66x98, BG1
	54x80, high family
	66x98
	34x50

	#info columns
	32
	32
	24
	32
	32
	26
	32
	16

	Maximum lift size
	256
	256
	320
	256
	256
	320
	256
	512

	Block parallel Tput (normalized to reflect the use of different shift sizes)
	3.72
	3.2
	3.36
	3.72
	3.2
	3.6
	3.8
	3.7

	Row parallel Tput (normalized to reflect the use of different lift sizes):
	24.8
	24.8
	25.1
	24.8
	24.8
	24.6
	24.8
	24.1

Table 2. Throughput values calculated based on different proposed PCMs, for rate 8/9.
	Design:
	An example PCM (attached)
	Intel,(R1-1700383
base matrix
	Intel, R1-1610377
	R1-167889 [10]
	R1-1700108
	R1-1610137
	R1-1701028 [11]
	R1-1700092

	matrix size
	6x38
	6x38
	5x29
	6x38
	6x38
	7x33, high family
	6x38
	4x20

	#info columns
	32
	32
	24
	32
	32
	26
	32
	16

	Maximum lift size
	256
	256
	320
	256
	256
	320
	256
	512

	Block parallel Tput (normalized to reflect the use of different shift sizes)::
	14.5
	14
	13.8
	14.5
	13.6
	13.6
	11.4
	14.37

	Row parallel Tput (normalized to reflect the use of different shift sizes):
	273
	273
	245.8
	273
	273
	190.2
	273
	204.8

As can be seen from Table 1 and Table 2, the throughput from different designs, all fall in the same range. The row orthogonality is not a critical feature to support, and with an appropriate set of design parameters and configurations, adequate flexibility, and reasonable throughput can be reached without requiring full row orthogonality. We note that imposing more design constraints such as full row orthogonality can result in performance degradation. Table 2 shows that peak rates well above 20 Gbps can be delivered without requiring row-orthogonal/semi-row-orthogonal design.
Observation 2: Row-orthogonality or semi-row-orthogonality is not essential to achieve the peak data rate target for NR LDPC design.
3.2. Latency
In order to calculate the latency, we consider the time taken for one decoding iteration. The number of edges in the base graph can be directly indicative of the decoding latency. Tables 3-4 summarize the latency values for different EMBB PCM designs, particularly, for the corresponding base matrices (Table 5 in Annex A summarizes the throughput/latency results for the proposed PCM for URLLC applications in [5]). The latency numbers are calculated assuming a block parallel architecture though it is straightforward to compute these numbers for other architectures as well.

Table 3. Latency values calculated based on different proposed PCMs, for rate 1/3.
	Design:
	An example PCM (attached)
	Intel, R1-1700383 base matrix
	Intel, R1-1610377
	R1-167889 [10]
	R1-1700108
	R1-1610137
	R1-1701028 [11]
	R1-1700092

	matrix size
	66x98
	66x98
	49x73
	66x98
	66x98, BG1
	54x80, high family
	66x98
	34x50

	#info columns
	32
	32
	24
	32
	32
	26
	32
	16

	Maximum lift size
	256
	256
	320
	256
	256
	320
	256
	512

	Number of edges in the PCM
	440
	509
	362
	440
	509
	368
	430
	224

	Number of edges in the PCM * Z/256
	440
	509
	452.5
	440
	509
	460
	430
	448

	Normalized latency per information bit (normalized num of edges * iter/ info length)
	0.54
	0.62
	0.59
	0.54
	0.62
	0.55
	0.53
	0.55

Table 4. Latency values calculated based on different proposed PCMs, for rate 8/9.
	Design:
	An example PCM (attached)
	Intel, R1-1700383 base matrix
	Intel, R1-1610377
	R1-167889 [10]
	R1-1700108
	R1-1610137
	R1-1701028 [11]
	R1-1700092

	matrix size
	6x38
	6x38
	5x29
	6x38
	6x38
	7x33, high family
	6x38
	4x20

	#info columns
	32
	32
	24
	32
	32
	26
	32
	16

	Maximum lift size
	256
	256
	320
	256
	256
	320
	256
	512

	Number of edges in the PCM
	113
	117
	89
	113
	121
	98
	145
	57

	Number of edges in the PCM * Z/256
	113
	117
	111.25
	113
	121
	122.5
	145
	114

	Normalized latency per information bit (normalized num of edges * iter/ info length)
	0.14
	0.14
	0.145
	0.14
	0.15
	0.15
	0.18
	0.14

Tables 3 and 4 again indicate that the parity-check matrices (i.e., the corresponding base matrices) from different proponents fall within the same range with respect to latency. Thus, the throughput and latency values for different PCM designs which use different values of Zmax, all fall in similar range. Higher values of Zmax, e.g., 512, do not show significant advantage in terms of throughput/latency. Given this, we think that a reasonable number of the maximum lifting value should be chosen to provide a good balance between throughput, latency, performance as well as the flexibility. Considering the data in Tables 1-4 and performance evaluations presented in [12], we think that Zmax value of 256 and 320 provide reasonable throughput and latency, and also result in good performance and sufficient flexibility through combination of coarse lifting values and zero-padding.
Observation 3: Zmax values of 256 and 320 provide reasonable throughput and latency, while resulting in good performance and sufficient flexibility.
While either Zmax =256 or 320 may be acceptable, we prefer a Zmax of 256. For Zmax = 320, the max block size will be close to 7680 (if 24 information columns are supported). Between 384 and 512, we prefer 384 as it provides sufficient degree (in parity-check matrix design) compared to 512.
Proposal 1: Support a maximum lifting value of Zmax = 256, and a maximum block size of 8192.
4. Number of supported base graphs
In last meeting, the number of supported base graphs was discussed (1,2 and 3 were possible choices). In our view, it is desirable to reduce the number of base graphs, while at the same time, ensure the design for NR is not compromised. In particular, the range of data rates, block sizes, coding rates may be widely varying. In such a scenario, it is desirable to support different ranges with different matrices optimized for different properties. For instance, at the large block sizes/code rates, where peak data rate is important, the base graph design can be optimized separately compared to the small block lengths and low coding rates. As long as some of the key complexity indicators (e.g. max lift size, lift values, max check degree, max number of edges, etc.) of a second base graph are covered by the first base graph, the additional hardware complexity to support an extra base graph is minimal.
Different base matrices may be designed to support different range of code rates and block sizes. For example, one base matrices may support the range of code rates from very high (~8/9) to low rates (1/3), and the second base matrix could support small block EMBB and URLLC use case when the code rate can range from 1/2 to 1/6. For peak rate scenarios, there is no need for extending a parity-check matrix from a very high code rate to a very low code rate – therefore the base matrix can be optimized for a limited range (e.g. 8/9 to 1/3). Therefore, our preference is to support two base graphs, each of which can be optimized separately for different range of block sizes/coding rates.
Proposal 2: NR LDPC design supports two base graphs.
5. Conclusion
In this contribution, we provide an overview of LDPC code design and properties, including the aspects related to Maximum lift size, throughput, latency, decoding architecture, zero-padding, number of supported base graphs, and row orthogonal structure.
Observation 1: LDPC design with supported Zmax=1024, shows error-floor behavior above 1e-4 BLER, for different rates for block size 8192.
Observation 2: Row-orthogonality or semi-row-orthogonality is not essential to achieve the peak data rate target for NR LDPC design.
Observation 3: Zmax values of 256 and 320 provide reasonable throughput and latency, while resulting in good performance and sufficient flexibility.
Proposal 1: Support a maximum lifting value of Zmax = 256, and a maximum block size of 8192.
Proposal 2: NR LDPC design supports two base graphs.
References	
[1] R1-1610377, “Channel Coding scheme for EMBB”, Intel Corp., RAN1 #86bis, Lisbon, Portugal
[2] R1-1700383, “LDPC prototype matrix design”, Intel corp., RAN1 NR Ad hoc, Spokane
[3] R1-166557	Intel, Comparison of channel coding schemes for NR, RAN1#86
[4] R1-1609511	Intel, Discussion on Data channel coding schemes for NR, RAN1#86bis
[5] R1-167703, Intel, Channel coding scheme for URLLC, MMTC, and control channels, RAN1#86 Gothenberg
[6] R1-1610682, Intel “Channel coding scheme for EMBB”, RAN1#86bis, Lisbon
[7] R1-1612585, Intel, “Discussion on EMBB data channel coding for block lengths less than X”, RAN1#87, Reno, Nevada.
[8] R1-1700111, “Implementation and Performance of LDPC Decoder”, Ericsson, 3GPP TSG RAN WG1 AH_NR Meeting
[9] R1-1700247, “Compact LDPC design for eMBB”, ZTE, 3GPP TSG RAN WG1 AH NR Meeting
[10] [bookmark: OLE_LINK1][bookmark: OLE_LINK2]R1-167889, “Design of Flexible LDPC Codes”, Samsung, 3GPP TSG RAN WG1 #86, Gothenburg, Sweden
[11] R1-1701028, “LDPC design for eMBB data”, Nokia, Alcatel-Lucent Shanghai Bell., RAN1 NR Ad hoc, Spokane
[12] R1-1702709, “Lift sizes for LDPC design”, Intel Corp., RAN1 #88, Athens, Greece

Annex A

Table 5. Throughput/Latency values calculated based on proposed PCM for URLLC [5], for rate 1/3 and 1/6.
	1Gbps clock, 10 iterations
	Intel, R1-167703 rate = 1/3
	[bookmark: _GoBack]Intel, R1-167703 rate = 1/6

	Matrix size
	17x25
	41x49

	#info columns
	8
	8

	#PCM edges
	79
	174

	Shift sizes to support info block 1000 bits
	125
	125 to support K=1000

	sum(ceiling (row weight/4))
	25
	49

	Block parallel Tput (Gbps):
	1.27
	0.58

	Row parallel Tput (Gbps):
	5.88
	2.44

	semi-row parallel or block parralel with 4 edges per cycle Tput (Gbps):
	4
	2.04

	Latency for block parallel (#PCM edges/(iter*info block length))
	0.0079
	0.0174

5/6
image1.jpg

