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Introduction
In the RAN1 January AdHoc 2017 meeting [1], it was agreed to consider multiple LDPC families in design of NR LDPC.
Agreement:
· Number of base graphs NBG is FFS between 1, 2 and 3, considering the trade-offs
· If NBG >1, 
· [bookmark: _GoBack]Each base graph covers a different range of block sizes and/or code rates (not necessarily precluding partially overlapping ranges)
· FFS whether one range can be fully covered by another range

Although many examples have been provided to shown how multiple LDPC families can be used for performance enhancements [2][3][4][5]. In this contribution, we focus on the hardware efficiency benefits which are shown to be significant compared to a single family solution. As such, multiple family LDPC codes can then provide improved throughput, decoding latency, as well as better energy efficiency compared to single LDPC code families. Moreover, such benefits can be independent of decoding architectures.
Multiple family LDPC
We review some key aspects of multi-family LDPC codes which were first introduced in [2].
[bookmark: _Ref471674129]Nested base graph structure
We define a family as a base graph which contains a collection of nested base graphs. Such a base graph consists of a high-rate core graph (i.e., highest rate supported before puncturing) and a low rate extension. The high-rate core includes two relatively high-degree punctured variable nodes that are base information nodes, and a set of degree three base information nodes that completes the set of information variable nodes. The parity structure is generally similar to the 802.11n encoding structure with the addition of one degree one-parity bit which is a parity of the two punctured variable nodes. The remainder of the base graph beyond the core graph consists of low-rate extension bits which are formed by taking parities of the systematic and parity-bits of the core graph. These can be used to generate re-transmissions that support rate-compatible IR HARQ. The entire structure has been optimized (offline) for connections to provide good performance at low complexity across all of the nested subgraphs. Figure 1 depicts a nested base graph family. Various details such as number of systematic information bit-columns and parities are different for the different families and are explained below.
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[bookmark: _Ref474082764]Figure 1: Family of nested base graphs













For each family, we define quantities  and  as the minimum and the maximum number of base information bit-columns in the nested set of base graphs and  and  as the minimum and maximum number of parity bit-columns, and  as the number of base parity checks in the core (also the number of base parity bits in the core). The number of punctured base information bit-columns is denoted by  and is set to two. Multiple base graphs are nested within each other starting at the smallest basegraph over  base information columns and ending with the largest basegraph with  base information columns. For different operating rates supported by the family, different starting base graphs can be selected from the nested collection and used for encoding and decoding.  The importance of this structure has been presented previously in [2], and more detailed discussion is provided in [12] on how this structure achieves fine granularity with coarse liftings. Here we only provide the main numerology needed for analysis of the hardware performance and utilization benefits for multiple families versus single families.
The base graphs derived from a given family are then lifted to achieve a binary parity check matrix. Rather than supporting a continuum of liftings, each family also consists of a set of clustered liftings, which are defined as follows. Consider the set of numbers  and the set of lifts given by  for . For each  the set of lifts  is referred to as the cluster of lifts.  The full set of lifts is given by the set {4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 640, 768, 896}. 
[bookmark: _Ref474078566]Multiple family descriptions
To meet all the NR requirements, three families or three nested base graphs are proposed in [2]. The three families are denoted as the highest, middle and the lowest family, which indicates the relative code rate of the core portion of the graph. Some key parameters related to these families are listed in the table below.
	Family
	
	
	
	
	
	
	
	
	
	

	High
	30
	24
	2
	7
	158
	5
	24/27
	30/186
	96
	8192

	Middle
	20
	16
	2
	9
	106
	10
	16/24
	20/124
	128
	8192

	Low
	10
	8
	2
	11
	114
	14
	8/20
	10/122
	64
	8192



[bookmark: _Ref474004302]High throughput implementations
For a given LDPC family, the largest block length is achieved using that family’s largest supported lift size . For example, the proposed high family reaches an information block length of 8192 bits using a lift size of 320, which was chosen because it provides good waterfall performance and low error floor in combination with a larger base graph as shown in [6]. The largest information block length is also where the maximum throughput is reached for each code rate. Therefore, codes with the maximum lift size are used to achieve peak throughput.
There are multiple high-throughput LDPC decoder implementation architecture. The two main ones discussed in NR are the edge-parallel (also called block-parallel) architecture and the node-parallel (also called row-parallel) architecture [7][8][9][10][11]. The major difference between the two architecture classes is in the number of base-graph edges (blocks) processed in parallel. A node-parallel decoder processes all edges belonging to the same base-graph check node (row) in parallel. Whereas an edge-parallel decoder processes a smaller subset, as small as one, of base-graph edges simultaneously.  Figure 2 illustrates the difference between the architectures and shows a single-edge architecture, a multiple-edge architecture with four parallel edges, and a node-parallel architecture.
To process  base-graph edges in parallel, a decoder implements  edge processors each comprising a cyclic shifter of size  and a group of  node processors to calculate the messages associated with this edge. In a node-parallel decoder,  is equal to the maximum check-node degree . Using a parallelism level  that is less than  reduces the computational logic complexity within each edge processor, but also reduces the maximum achievable throughput. Therefore, the peak throughput determines the level of parallelism. As was discussed in [7], the cyclic-shift network implication complexity increases super-linearly according to , therefore it is important to choose a  value that provides a balance between decoder throughput and implementation complexity. The decoding throughput of the  LDPC code with  from the proposed high family exceeds 20 Gb/cycle when four edges are decoded in parallel and 12 layered iterations are used [7].
Observation 1: Peak throughput determines the computational resource parallelism and complexity of both edge- and row- parallel decoder architectures.




[bookmark: _Ref474066463]Figure 2 Decoder architectures: (a) single-edge, (b) 4-edge, and (c) node-parallel
The latency of an edge-parallel decoder was calculated in [7] as cycles per codeblock, where  is the codeblock length,  the average variable node degree,  the lift size,  the number of edges processed in parallel, and  the number of decoding iterations. If the decoder parallelism is constrained to , the latency is approximately cycles per codeword. Given this latency, the information throughput is  bit/cycle. It can be observed from this expression that the throughput of an edge-parallel decoder is proportional to the lift size up to the parallelism constraint .
In [10], the latency of a node-parallel decoder is given as , where  is the number of layers, and  is the number of clock cycles required to process a layer. While a layer in [10] can contain multiple base-graph check nodes (rows), doing so significantly increases the decoder implementation complexity and is unnecessary to achieve peak throughput. Therefore, in this analysis, each layer contains a single base-graph check node (row). The number of base-graph nodes is equal to the number of rows in the base matrix which can be calculated from the information block length and code rate approximately as . Since a decoding layer is assumed to contain one base-graph node, the number of layers in the latency calculation becomes  and the latency  cycles per codeblock. Similar to the edge-parallel decoder, when a parallelism constraint  is used, the latency is approximately  cycles per codeblock. The information throughput of a node-parallel decoder is   bit/cycle, which is proportional to the lift size  to the parallelism constraint .
Observation 2: The throughput of both edge-parallel and node-parallel LDPC decoders is proportional to the lift size up to the parallelism-level constraint.
Since the throughput of both edge-parallel and node-parallel decoders is proportional to the lift size, the throughput analysis continues using an edge-parallel decoder with a single edge processor without loss of generality.
As the block length decreases, the lift size of the codes in a family decreases and as a result so the throughput decrease as well. Figure 3 shows the normalized throughput per iteration for codes from the high family at different rates as the information block length changes with a parallelism constraint . The case of  is analysed in the next section. The throughput varies slightly when the lift size is constant but the block length changes. The major changes in throughput occur when the lift changes. For the code of rate 1/3, the ratio of the throughput at  and  is  since the average variable does not vary significantly with block length.
Observation 3: Decoding small blocks will be significantly slower than decoding large blocks when using a single code family.
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[bookmark: _Ref474074114]Figure 3 Decoding throughput per iteration for codes of different rates and block lengths from a single family
As discussed earlier, each edge processor is provisioned for a lift size of . As the block length and lift size  decrease, the number of active node processors in an edge processor decreases. The utilization ratio is . For the high family, is only used for block lengths . Since for NR the  and  [1], the computational hardware will be fully utilized for only 6.3% of the block lengths. This leads to a large amount of underutilized dark hardware. This underutilization applies to all single-family solutions. For example, to reach , the code in [10] will have a lift size of 4 where as the hardware will be provisioned for 
Observation 4: A single-family solution leads to underutilization of decoding hardware resources as the block length decreases for both edge-parallel and block-parallel decoders, as compared with a multiple family solution as given in [2].
[bookmark: _Ref474150675]Improved Hardware Efficiency
In this section, the use of multiple code families is proposed a solution to the throughput and hardware underutilization issues of single family proposals.
The family parameter table in Section 2.2 shows that the middle and low families have smaller base graphs than the high family. Therefore, at the same information block length , codes from the low family have the largest lift sizes followed by codes from the middle family. The high family will have codes with the smallest lift size. Therefore using the same decoder hardware, codes from the low family will have the highest throughput, followed by those from the middle family, then the high family at the same information block length and code rate.
Observation 5: Subject to an implementation complexity constraint, codes from families with larger lift sizes will have higher decoding throughput than codes from families with smaller lift sizes at the same information block length and code rate.
Since the high family is the only family that supports code rates larger than 2/3, it is used to achieve the peak throughput and the decoder hardware only need to be provisioned to efficiently support its maximum lift size of 320, i.e. only 320 node processors per edge processor need to be implemented. To generalize, each edge processor in the decoder will have an parallelism level of , where  is the lift size used in the peak-throughput case.
Given a parallelism constraint , the throughput of the three code families is analysed. Only codes with a lift size  are chosen from the middle and low family, the case where codes with all lift sizes are used is presented in the appendix. All codes from the high family have  in this information block range. As in Section 3, a single-edge decoder is used in the analysis, but the conclusions also apply to multiple-edge and node-parallel decoders. Figure 4 shows the normalized decoding throughput of the three families subject to . It can be observed that low family is 3.5—4.5 times as fast as the high family at the same information block length and code rate. The middle family is 1.5—2 times as fast as the high family. 
[image: ][image: ]
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[bookmark: _Ref474001900]Figure 4 Normalized decoding speed for codes from the three families with 
By setting the parallelism level to 320, the low family can be used for  and the middle family for  when they support the required code rate to significantly increase decoding throughput over a single family solution. The middle family can be used for codes with  as well when it supports the code rate, but the middle family does not.
When 
Since the high family has the largest base graphs of the three families, the routing network between the memory and edge processors in the multiple-edge and the node-parallel will accommodate the low and middle families without an increase in its complexity. Some of the control logic will need to be modified when more than one family is supported and the code description memory will increase in size. However, these changes will not have a significant impact on decoder area.
Observation 6: A multi-code family solution yields significant throughput increases compared to a single-family solution without increasing the implementation complexity of the decoder.
An LDPC decoder that utilizes codes from the middle and low families as the block length decrease will better utilize the hardware available and reduce the amount of dark hardware. For code rates where all three families are supported, the hardware will be fully utilized using codes of lift size 320 for . This corresponds to full hardware utilization for 30% of the EMBB information block length range, compared to 6.3% in the single family case. 
For very short block lengths, codes from the low family use a lift size of 12, which leads to three times the hardware utilization of codes from the high family with lifts of size 4. These improvements in utilization and reduction in dark hardware apply to edge-parallel as well as node-parallel decoders.
While the examples in this section used the three families proposed in [2], the throughput and efficiency gains apply to other multiple family solutions with different maximum base-graph sizes such as [3][4][5]. For example, in [3], the family which covers all code rates and the majority of information block lengths has lift sizes . Whereas the second family can use a lift size  with hardware utilization that is  times as much as the first family.
Observation 7: A multi-code family solution improves hardware utilization and efficiency compared to a single-family solution in both edge-parallel and node-parallel decoders.
All three of the proposed code families were shown to have good waterfall performance and robust, low error-floor [6]. Therefore the throughput, latency, and efficiency gains of using multiple code families do not comprise performance. Figure 5 shows that the performance of codes from the three families with  have good performance down to a BLER of .
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[bookmark: _Ref474009525]Figure 5 Performance of codes with Z <= 320 from the three families.
Given the throughput and efficiency gains and the robust performance of the three family solution, we propose the following:
Proposal 1: Multiple LDPC families should be supported in NR. In particular, NR should continue to study design both 2 and 3 families to provide maximum benefits across performance and implementation.
Conclusions
Observation 1: Peak throughput determines the computational resource parallelism and complexity of both edge- and row- parallel decoder architectures.
Observation 2: The throughput of both edge-parallel and node-parallel LDPC decoders is proportional to the lift size up to the parallelism-level constraint.
Observation 3: A multi-code family solution yields significant throughput increases compared to a single-family solution without increasing computational logic complexity in the decoder.
Observation 4: A single-family solution leads to underutilization of decoding hardware resources as the block length decreases for both edge-parallel and block-parallel decoders, as compared with a multiple family solution as given in [2].
Observation 5: Subject to an implementation complexity constraint, codes from families with larger lift sizes will have higher decoding throughput than codes from families with smaller lift sizes at the same information block length and code rate.
Observation 6: A multi-code family solution yields significant throughput increases compared to a single-family solution without increasing the implementation complexity of the decoder.
Observation 7: A multi-code family solution improves hardware utilization and efficiency compared to a single-family solution in both edge-parallel and node-parallel decoders. 
Given the throughput and efficiency gains and the robust performance of the three family solution, we propose the following:
Proposal 1: Multiple LDPC families should be supported in NR. In particular, NR should continue to study design both 2 and 3 families to provide maximum benefits across performance and implementation.
Appendix
In Sections 3 and 4, it was mentioned that code with lift  can be decoded using a decoder with a parallelism level  even when . In this section, the hardware modifications necessary to support this case are discussed and the throughput of the three code families is presented.
For an edge processor to support a lift size , the cyclic shift network must be designed to support the largest possible shift size . Since the messages are calculated in groups of , additional memory is required in the edge processor to group the output messages into a single group of  messages before writing them to memory. The latency of the edge calculation is increased by a factor of . Therefore, the overall latency is increased by the same factor as shown in Section 3.
The normalized throughput per iteration for the three families is shown in Figure 6. The codes were chosen from each family without constraints on the lift size. The decoder parallelism is set to  and for all codes whose lift size exceeds , the throughput is reduced by a factor of . These results illustrate that there are throughput gains to be had even when the lift size exceeds the parallelism level. As discussed earlier, the complexity of the cyclic shifters will scale with the largest lift size and additional memory is required. Therefore, the throughput gains in the case of  increase the decoder area.
[image: ] [image: ] [image: ] [image: ]
[bookmark: _Ref474151982]Figure 6 Normalized decoding speed of the three code families when .
All three families exhibit good waterfall and error floor performance as shown in Figure 7 and further discussed in [6].
[image: ]
[bookmark: _Ref474152602]Figure 7 Performance of codes from the three families
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