Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG-RAN WG1 #88	R1-1701628
Athens, Greece, 13th – 17th February, 2017

Source:	Ericsson
Title:	Design Parameters and Implementation Aspects of LDPC Codes
Agenda Item:	8.1.4.1
Document for:	Discussion and Decision
Introduction
In RAN1#87ah-NR, the following agreements on LDPC code design were reached:
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined for a H matrix are selected from the following set of {Kmax, Zmax} pairs:
· {8192, 256}, {8192, 512}, {8192, 1024},
· {FFS near 8192, 320}, {FFS near 8192, 384}
· The exact {Kmax, Zmax} pair to be selected from the above 5 at RAN1#88

· Base graph for supporting Kmax has minimum code rate Rmin,kmax = ~1/3
· ‘~’ means approximately
· This does not preclude extending the same base graph to code rate lower than ~1/3 when supporting K<Kmax, provided that the number of variable nodes (after lifting) of any parity check matrix, Nmax, is not exceeded, where:
· Nmax = Kmax / Rmin,kmax + Nsys,punct
· Nsys,punct is the number of built-in punctured systematic bits

· Base graph for any info block sizes K has
· Rmin,k >= ~1/5, provided that Nmax is not exceeded

· For the QC-LDPC design, the non-zero sub-blocks have circulant weight = 1
· Circulant weight is the number of superimposed circularly shifted ZZ identity matrices

· Built-in puncturing of systematic bits is supported for LDPC coding, that is:
· At least for the initial transmission, the coded bits are taken after skipping the first Nsys,punct systematic bits
· Nsys,punct is selected from: 0, Z, and 2*Z

· The rate matching for LDPC code is circular buffer based (same concept as in LTE)
· The circular buffer is filled with an ordered sequence of systematic bits and parity bits
· FFS: Order of the bits in the circular buffer
· For IR-HARQ, each Redundancy Version (RV), RVi, is assigned a starting bit location Si on the circular buffer
· For IR retransmission of RVi, the coded bits are read out sequentially from the circular buffer, starting with the bit location Si
· Limited buffer rate matching (LBRM) is supported

In this contribution, we discuss the design parameters and implementation aspects of LDPC codes further. We first describe how the throughput, latency and hardware resources needed may be estimated from code and hardware parameters. Then LDPC code designs from four different companies are compared in terms of throughput, latency and area needs. Finally, we update our LDPC code parameters to achieve an LDPC code that is more attractive from implementation perspective.
Row-orthogonality

In order to improve throughput and reduce decoding latency, we may adopt row orthogonality. However, it should be mentioned that full row orthogonality, i.e., rows i and i+1 of the base graph being orthogonal to each other, may give codes with reduced BLER performance due to the additional constraints on the code structure. The pure row orthogonality condition may be slightly relaxed, as in [3], where quasi-row orthogonality is adopted. Quasi-row orthogonality as defined in [3] requires orthogonality for all columns except the systematic punctured columns. This has been shown to improve the threshold of the code.

In combination with quasi-row orthogonality or sparse base graphs with non-orthogonal rows, fast layered decoding can be used to reduce decoding latency and increase the throughput, see [1]. In fact, applying the fast layered decoding algorithm implies that there is no difference in latency between the parity-check matrices with and without row orthogonality. In this case, any difference in latency between different parity-check matrices is only due to different degrees of sparseness.

Implementation of the fast layered decoding however increases the memory needs slightly. Depending on the amount of overlapping ZxZ sub-blocks between the different rows, there is a very small performance degradation (~0.1 dB) due to the fast layered decoding [1]. This may imply that the number of average decoding iterations becomes slightly higher when the fast layered decoding is used.

[bookmark: _Ref474192288]Throughput calculation
The LDPC decoder for NR should be able to support high throughput. According to the NR design requirement, a throughput of 20 Gbps shall be possible in DL and 10 Gbps in UL. In this section we discuss which parameters that have an impact on the throughput, and further we give an expression for calculating the throughput.
The throughput depends on the processing clock frequency of the decoder, the number of iterations used by the decoder, the number of information bits in each codeword, the size Z of each ZxZ sub-block, the latency for one iteration and how many codewords that are decoded in parallel.
The average number of decoding iterations that are needed depends mainly on the BLER target used to select the modulation scheme and the code rate. If the BLER target is high and the decoder is operating at a high probability of block error, the average number of decoding iterations is close to the maximum number of allowed decoding iterations. If link adaptation procedure selects the MCS according to a low BLER target, the decoder will often find a codeword after only a few iterations, and the average number of decoding iterations is much lower. The selection of BLER target impacts the throughput and must be optimized for highest throughput.
The BLER target selection of link adaptation impacts the throughput and must be optimized for highest throughput.

The size of the sub-block Z decides how many rows of the parity-check matrix that are calculated in parallel. All the rows within a layer can be calculated in parallel and thereby increase the throughput. A larger Z requires more hardware resources for calculating one row of the base graph or longer calculation time. Too large Z limits the code design and prevents good code design for the code rate range.
Sub-block size Z impacts the throughput. A higher value increases the throughput to the cost of hardware resources.

The number of iterations needed to achieve a certain BLER is impacted by the channel conditions, the selected code rate, the performance of the LDPC code as well as the decoder implementation. A better-performing LDPC code will require fewer iterations, hence increases the throughput. A denser LDPC code will require longer latency than a sparser LDPC code, using the same hardware resources, for one iteration and thereby lower the throughput. Assuming that an early stopping rule is implemented, the LDPC decoders stop iterating as soon as the decoder converges to a codeword that satisfies the stopping crietria. While many stopping criteria exist for LDPC codes, a typical one is that the parity checks as defined by the H matrix are satisfied. Due to the stopping crietria, the actual number of iterations needed for the decoding can vary from codeword to codeword. The average number of iterations to achieve a certain BLER should be used for the throughput calculations.
LDPC code design impacts the throughput. A good-performing code as well as a sparser code increase the throughput.
The average number of iterations shall be used for throughput calculations.

The formula for calculating the throughput in Gbps (assuming the clock frequency is in GHz)
F= clock frequency [GHz]
K = Information block size [bits]
Nlayer = number of layers for the code rate
CClayer = average number of clock cycles per layer
Niter = average number of iterations
Ncw = number of codewords that may be decoded in parallel

[bookmark: _Ref474192823]Latency calculation
While the throughput can be increased by calculating several codewords in parallel, the latency for a given codeword does not change. Instead the latency is determined by the calculation-time for a single codeword.
The latency can be reduced by using a row-orthogonal or quasi-row-orthogonal implementation. If the code is not row-orthogonal or if the quasi-row-orthogonal implementation is too slow, then the fast row-layered algorithm can be used, see [1].
The decoding latency can be improved by use of row-orthogonal or quasi-row-orthogonal LDPC codes and/or by usage of the fast layered decoding algorithm.

The latency also depends on the amount of hardware resources used. Decoding of one layer in parallel gives the lowest latency but this requires high amount of hardware resources since all the active sub-matrices in the layers must be read, calculated, and written back in parallel.
In most LDPC codes the density within the layers varies from a few active ZxZ sub-blocks to tens of active sub-blocks. If the hardware resources are dimensioned for the layer with the highest number of active rows, then the layers with fewer active rows utilize the hardware poorly. For better utilization of the hardware resources it is better to lower the number of active sub-blocks that can be calculated in parallel. This will however have an impact on the latency since execution of one row with a high number of active sub-blocks will take longer time.
The hardware resources should be optimized considering both utilization of hardware resources and latency/throughput.

The latency for decoding a codeword using row-layered design [3], consists of calculating all the layers for as many iterations as needed until the codeword is found or for the maximum number of iterations. The latency of one iteration consists of the time to read the VN values and CN values from memory for each layer, the time to calculate all the rows within one layer and the time to write the result back to memory.

The formula for calculating the latency in number of clock cycles (cc) per decoded codeword (data input and output is ignored, assumed to be parallel to the decoding):
Lread = number of cc to read the VN and CN values associated with one layer
Lvn1 = number of clock cycles to subtract the CN value from the VN sum
Lcalc= number of clock cycles to calculate the CN values associated with one a layer
Lvn2 = number of clock cycles to calculate the updated VN values
Lwrite = number of clock cycles to write the VN values
Nlayer = number of layers for the code rate
Niter = average number of iterations

Hardware resources needed

For area efficiency calculation some measure of hardware resources is needed for different codes. The hardware resources relevant for the area efficiency calculation are required memory space and the amount of parallelization that is available. The memory requirement is based on the most demanding LDPC code, while parallelization is an implementation parameter.
The latency and throughput values are implementation dependent. Several of the values depends on how many ZxZ sub-blocks that can be accessed simultaneously. If all sub-blocks within one layer shall be possible to be read in one clock cycle, then the memory bandwidth is rather excessive and computing hardware resources is high. By introducing a parameter representing parallel hardware resources available, showing the number of sub-blocks that can be accessed in parallel, the latency and throughput for different LDPC codes can be measured using the same hardware resources. The parameter can be updated to represent different implementations.
The amount of available hardware resources impacts the latency and throughput. A factor for how many sub-matrices the hardware resources can handle simultaneously can describe the hardware resource impact.

We define the hardware parameters:
P = number of parallel sub-blocks
A = number of active sub-blocks in a layer (code dependent)
Nedges = number of non-zero sub-blocks in the parity-check matrix for the selected rate
N = codeword size

The hardware resource formula for calculation of one codeword:
Memory need: N + Nedges*Z
Hardware resources = P
Comparison of different LDPC codes
In this section, we compare the throughput, latency, memory area and throughput per area of four different base graphs proposed for NR. The details of the calculations are given in the Appendix, but the main assumptions are:
F=1 GHz
Niter = 5 iterations (for the high throughput scenarios a good channel is assumed)
P = number of sub-blocks given by Max (512 rows or 4 sub-blocks)

The number of sub-blocks that are processed in parallel (P) is assumed to be limited by 4 sub-blocks or 512 rows. This means that 4 sub-blocks with Z=128 or lower can be processed in parallel, while only 2 sub-blocks can be processed in parallel if the sub-block size is 256 or only 1 sub-block in parallel if the sub-block size is 320 or 512.
The following tables compare different aspects of LDPC code designs, such as throughput and latency. To perform the calculation we assume that a fixed amount of hardware resources able of processing P sub-blocks in parallel. First we consider K=8192, R=8/9, and a high SNR, which are the parameters for which the peek throughput of 20 GBits/s should be achieved. If the assigned hardware resources are not enough to achieve the desired peak throughput, the hardware resources can be increased so that the decoder can decode several codewords in parallel.
A comparison is also shown for R=1/3, where the latency is higher. The memory area needed for both code rates is based on the code that requires the largest codeword. According to the agreements, this is the case for K=8192 and R=1/3, which is the minimum code rate achieved through code extension for the maximum info block size.
It should be noted that the values for [5]’s high family is calculated under the assumption that only one sub-block of size Z=320 can be processed in parallel. The implementation may however be optimized to give a higher efficiency for Zmax=320 instead of for Z values which are powers-of-two.

Table 1 – LDPC Throughput and latency comparison between different designs (K = 8192, R = 8/9)
	
	P
	Throughput (Gbps)
	Ncw needed to achieve 20 Gbps
	Latency (cc)
	Memory area

	Ericsson [2]
(base graph 1)
	Two Z=256 subblocks
	12.9
	2
	635
	 137 728

	Samsung [6]
	Two Z=256 subblocks
	13.32
	2
	615
	155 392

	Qualcomm [5] (high family)
	One Z=320 subblock
	12.9
	2
	635
	141 824

	MediaTek [4]
	One Z=512 subblock
	16.38
	2
	725
	164 736

Table 2 – LDPC Throughput and latency comparison between different designs (K = 8192, R = 1/3)
	
	P
	Throughput (Gbps)
	Ncw needed to achieve 20 Gbps
	Latency (cc)
	Memory area

	Ericsson [2]
(base graph 1)
	Two Z=256 subblocks
	1.79
	12
	4555
	137 728

	Samsung [6]
	Two Z=256 subblocks
	3.9
	6
	2100
	155 392

	Qualcomm [5] (high family)
	One Z=320 subblock
	1.8
	12
	4545
	141 824

	MediaTek [4]
	One Z=512 subblock
	2.88
	7
	2840
	164 736

Updated code parameters
As described in Section 3, the throughput increases with increasing lifting size Z. To achieve a higher throughput and reduce the latency, base graph 1 proposed in [2] can be modified to use Zmax=512 (instead of Zmax=256), which is associated with the agreed maximum information block length of 8 192 bits. Investigation shows that the performance loss due to the increased structure of the code to be very small.
Together with an increase of Zmax, the full set of Z values is updated accordingly. The full set of Z values is selected considering implementation efficiency, maximum shortening required, and good granularity coverage of the full range of information block size.
The parameters of the new set of base graphs are shown in Table 3. The proposed Z values can all be written as . Furthermore, while keeping the total number of lifting sizes low, the proposed Z values may be used to achieve 1-bit granularity in K while never exceeding 20% shortening, except for Lift 1.

[bookmark: _Ref473983257]Table 3	LDPC code parameters
	
	Kb,max
	Kb,min
	Kmax
	Kmin
	Ndeg1
	Rmax
	Rmin
	Z

	Base graph 1
	16
	12
	8192
	192
	Z bits
	8/9
	¼*
	Lift 1: 16, 24, 32, 40
Lift 2: 48, 56, 64, 80,
Lift 3: 96, 112 128, 144
Lift 4: 160, 192, 224, 256
Lift 5: 320, 384, 448, 512

	Base graph 2
	10
	6
	1600
	48
	Z bits
	2/3
	1/5
	Lift 1: 8, 16, 24, 32
Lift 2: 48, 64, 80, 96
Lift 3: 112, 128, 144, 160

* Note that for Base graph 1, for Kmax=8192 and K values close to it, the code extension stops at Rmin=1/3. For smaller K values, the code extension continues to Rmin=1/4.

Conclusions
In this contribution we discussed the impact of different code parameters and parity-check matrices on performance metrics as throughput, latency and the amount of hardware resources needed by the decoder. We made the following observations:
1. The BLER target selection of link adaptation impacts the throughput and must be optimized for highest throughput.
1. Sub-block size Z impacts the throughput. A higher value increases the throughput to the cost of hardware resources.
1. LDPC code design impacts the throughput. A good-performing code as well as a sparser code increase the throughput.
1. The average number of iterations shall be used for throughput calculations.
1. The decoding latency can be improved by use of row-orthogonal or quasi-row-orthogonal LDPC codes and/or by usage of the fast layered decoding algorithm.
1. The hardware resources should be optimized considering both utilization of hardware resources and latency/throughput.
1. The amount of available hardware resources impacts the latency and throughput. A factor for how many sub-matrices the hardware resources can handle simultaneously can describe the hardware resource impact.

[bookmark: _In-sequence_SDU_delivery]References
[bookmark: _Ref473623551]R1-1700111, Implementation and Performance of LDPC Decoder, Ericsson, January 2017
[bookmark: _Ref474189802]R1-1700108, LDPC code design, Ericsson, January 2017.
[bookmark: _Ref471733143]Hocevar, D. E. (2004). A reduced complexity decoder architecture via layered decoding of LDPC codes. IEEE Workshop on Signal Processing Systems.
[bookmark: _Ref473797259][bookmark: _Ref473797412]R1-1701210, High Performance LDPC code Features, Media Tek Inc., January 2017
[bookmark: _Ref474168696]R1-1700830, LDPC rate compatible design, Qualcomm Inc., January 2017,
[bookmark: _Ref474168679]R1-1700976, Discussion on LDPC code design, Samsung, January 2017.

Appendix
Calculations for code rate 8/9
In this section, we show how the throughput, latency and area are calculated. We use the parity-check matrix (base graph 1) from [2][4][5][6]. The parameters needed for the calculations are given in Table 4, and basically two parameters, i.e., number of layers and row weight, are the key features for calculating the mentioned metrics. Note that for [5]’s base graph, we have chosen the high family, as it is the only one among the family of codes that covers K = 8192. Furthermore, the columns that correspond to shortened bits in [5]’s base graph must be excluded from the calculation. For example, for rate 8/9, columns from 25 to 31 from the original base graph need not to be considered as they represent shortened bits.

[bookmark: _Ref474169761]Table 4 -- LDPC Parameters for K = 8192, R = 8/9
	
	Samsung [6]
	Ericsson [2]
	MediaTek [4]
	Qualcomm [5] (high family)

	Size of base matrix
	6x37
	6x38
	4x20
	5x29

	Zmax
	256
	256
	512
	320

	Number of layers
	6
	6
	4
	5

	Row weight
	18 18 19 19 19 17
	28 29 26 26 6 6
	17 17 19 3
	17 13 18 13 11

	Maximum row weight
	19
	29
	19
	18

First we calculate the throughput under the assumption that only one codeword is calculated in parallel. It is also assumed that the decoder hardware can process 4 sub-blocks of size 128x128 in parallel, or similar, 2 sub-blocks of size 256x256 or 1 sub-block of size 512x512.
The throughput is calculated as described in Section 3, but since the number of clock cycles per layer (varies, we will instead sum the number of clock cycles needed for each layer as

The number of clock cycles needed to calculate layer j is calculated as

The parity-check matrices with rate 8/9 all have only a single row per layer. The row weight of row j given in Table 4 thereby correspond to the number of active sub-blocks in layer j. For base graph 1 in [2], is used for . This means that two sub-blocks can be processed in parallel (.

The latency also depends on the number of clock cycles needed to decode each layer, as described in Section 4. Reformulating it to take the different number of clock cycles needed for the different layers into account, the latency is given by

For base graph 1 in [2], the latency is

With 1 GHz clock frequency, the decoding latency is 0.64 us.

Calculations for code rate 1/3

The parameters needed for the calculations for code rate 1/3 are given in Table 5. The throughput, latency and area are calculated based on number of layers and row weights for each base graph similar to calculations described in detail in the previous section.

[bookmark: _Ref474169762][bookmark: _Ref474176961]Table 5 -- LDPC Parameters for K = 8192, r = 1/3
	
	Samsung [6]
	Ericsson [2]
	MediaTek [4]
	[bookmark: _GoBack]Qualcomm [5] (high family)

	Size of base matrix
	66x98
	66x98
	34x50
	62x92

	Zmax
	256
	256
	512
	320

	Number of layers
	16
	58
	31
	43

	Row weight
	19 19 19 19 19 18 7 7 8 7 7 7 7 7 6 7 7 7 6 5 6 6 6 6 5 5 5 6 5 5 5 5 6 5 5 6 5 5 5 5 5 5 5 6 5 4 5 5 4 5 5 5 4 5 4 5 5 5 5 4 5 5 5 4 5 5
	28 29 26 26 6 6 9 9 9 9 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 5 5 6 6 5 5 6 6 5 5 6 6 5 5 5 5 5 5 6 6 5 5 6 6 5 5 5 5
	17 17 19 3 6 9 8 8 8 7 7 6 5 5 6 6 6 5 5 6 5 5 5 5 5 5 5 5 5 5 4 5 4 5
	20 15 22 16 17 17 3 9 9 10 9 9 8 8 7 7 7 8 7 6 7 7 6 6 6 6 6 6 6 5 6 5 6 5 7 5 5 6 4 5 5 5 7 4 5 5 5 5 5 5 4 4 5 4 6 5 5 5 5 5 4 4

	Maximum row weight
	19
	29
	19
	22

	7/9	
