3GPP TSG-RAN WG1 #87
R1-1613072
Reno, U.S.A., November 14-18, 2016
Agenda item:

7.1.5.1
Source:
Nokia, Alcatel-Lucent Shanghai Bell

Title:
Near optimal performance for LDPC with OSD/List decoding
Document for:

Discussion and Decision
1
Introduction
In RAN1 #86bis meeting, following agreement was made on eMBB data channel coding scheme,
Agreement:

· The channel coding scheme for eMBB data is LDPC, at least for information block size > X

· FFS until RAN1#87 one of Polar, LDPC, Turbo is supported for information block size of eMBB data <= X

· The selection will focus on all categories of observation, including overall implementation complexity, regardless of the number of coding schemes in the resulting solution (except if other factors are generally roughly equal)

· The value of X is FFS until RAN1#87, 128 <= X <= 1024 bits, taking complexity into account

· The channel coding scheme(s) for URLLC, mMTC and control channels are FFS

In addition, following observations were made considering implementation complexity. We captured some aspects mentioned on decoding algorithms,

Observations:

· Implementation complexity

· LDPC:
· Some variants of min-sum based iterative decoders are considered implementable, and allow a trade-off between complexity and performance
· Two proponents consider quasi-ML decoders (e.g. list 32, ordered statistics decoding) implementable for codeword sizes up to 1k

· BP and sum-product decoders are not considered implementable for NR by some companies

· Polar:

· For list decoders, the implementation complexity increases with increasing list size, especially with larger block sizes

· Some companies consider that a List 32 decoder is implementable up to a codeword size N of at least 1k (with larger codeword sizes requiring a segmented design), although some other companies have concerns on the achievable performance (including area efficiency, hardware throughput)

· Some companies consider that a List 8 decoder is implementable for codeword sizes N up to 4k (with larger codeword sizes requiring a segmented design)

· List 4 decoder is considered implementable for codeword sizes N up to at least 2k, with some companies considering it implementable up to 8k (with larger codeword sizes requiring a segmented design)

· List 1 is considered implementable

· Turbo:

· Some advanced turbo decoders are considered implementable, and allow a tradeoff between complexity and performance.

· Some companies consider quasi-ML decoders are implementable for shorter information block lengths and codeword sizes up to 1k

Considering observations mentioned above, it is clear that we do not have any consensus on implementing quasi-ML decoders. However, some companies used quasi-ML decoders in the performance evaluations, which is not fair when they mix quasi-ML decoders for one code and use practical decoders for the other codes. For example, use of larger list sizes for polar codes while considering offset min-sum decoder for LDPC will not provide a fair performance comparison among codes. Considering by such assumptions, polar proponents argued that the polar codes have better performance compared to LDPC codes at shorter block sizes. In this contribution, we show that the gains are not only feasible for polar codes and the similar benefits can also be achieved with LDPC codes with different decoding algorithms.

Besides, it has been observed that the CRC concatenation or parity check concatenation is used with some code families compared to another code family without concatenation. In the context of performance evaluations, CRC concatenation should be used for all codes or not considered at all in order to get a fair comparison of the inherent performance of the codes. We also show that the CRC concatenation is improving the performance of all block codes to the random code performance, which is the best to achieve.

2
LDPC performance at shorter block sizes
In Ran1 #85 meeting, it was agreed that LDPC, polar, and Turbo have comparable performance with larger block sizes. It would be better to identify reasons based on coding theory perspective,
· Iterative decoding algorithms used for LDPC and Turbo provide performances very near to Shannon bound at very large block sizes.
· All codes decoded with iterative decoding will have significant performance difference compared to the ML bounds at shorter blocks.

· Quasi ML algorithms can be used to reduce the gap and provide better performance.

· LDPC has very good minimum Hamming distance properties as a code compared to other codes. They are asymptotically good, which is not the case of Polar codes, and main Cyclic and Algebraic codes.

· Concatenated codes (e.g.: CRC concatenated Polar, parity check concatenated Polar, and CRC concatenated LDPC) provides much better minimum distance properties with additional complexities.
2.1
Coding performances with the same algorithm
In this section, we investigate the performance of several codes when the same algorithm is used for decoding. This provides good understanding about the inherent performance of codes. In particular, we consider short length codes families including LDPC, Polar, BCH and Reed-Muller codes of rate one half. For decoding, we consider a universal decoder that can decode any linear block code, namely the Ordered Statistics Decoder (OSD). As such, we compare codes and not decoders.

Besides one should mention for LDPC codes, practical decoders based on combining OSD with Belief Propagation enable achieving quasi-ML performance [1-3].

Figure 1 shows the decoding performance in terms of word error rate versus the SNR on the binary input Gaussian channel, and we also plot the Shannon bound describing the word error probability of optimal spherical code used for finite length and extremely precise for code length >100 bits [4].

We observe that the BCH is outperforming all other codes families, followed by the regular (3,6) LDPC code. We show a gain of 1.1 dB at the 1% BLER thanks to the use of OSD quasi-ML decoder for LDPC compared to the belief propagation performance. We also observe that LDPC is close to the fundamental Shannon limit within 0.5 dB while polar codes show a gap of 1.75 dB. We precise that the considered LDPC code is not optimized, which means that optimized LDPC codes are to perform even better. The polar code has been generated using density evolution for the selection of the highest mutual information rows.

It is important to note that OSD decoding of Polar codes has been compared to the successive cancellation list decoding in [5] with and without CRC concatenation, and OSD based decoders outperform the successive cancellation list decoding for both considerations. Therefore, the analysis provided for all codes shows the best performance that they can achieve (with and without CRC concatenation) with known quasi-ML algorithms.
[image: image1.png]
Figure 1 : BLER versus SNR for code length 256 and rate 1/2.
[image: image6.png]

In Figure 2, we show the impact of the concatenation of 16 bits CRC code on the same code families considered above. With CRC concatenation, BCH still having the best performance followed by LDPC. However, the CRC makes all codes behave almost like random codes with a comparable performance and very close to the Shannon bound [6].

Observation 1: As a code, LDPC has better performance compared to Polar codes. All codes can improve their short block performance when they use concatenation with other codes.
Proposal 1: CRC concatenation (or any other concatenation) should be used for all codes or not considered at all in order to get a fair comparison of the inherent performance of the codes.

2.2
LDPC performance with OSD decoding
Next, we further highlight performance gains for LDPC if we use a quasi-ML type of decoding algorithm. Figure 3 and 4 show that LDPC performance with 128 and 400 info block for several code rates. We use both OSD and offset min-sum decoders, where it is clearly visible that LDPC can achieve excellent performance with OSD decoding. Similar performance gain can be achieved for all other block sizes by assuming this quasi-optimal decoding algorithm. This further justifies that there is no such special advantage of polar or turbo codes when compared to the LDPC codes.
[image: image7.png]
Figure 3: LDPC with OSD and offset min-sum for info block of 128 bits
[image: image2.png]
Figure 4: LDPC with OSD and offset min-sum for info block of 400 bits

Observation 2: LDPC codes can improve their performances by assuming quasi-ML decoding algorithms, which often outperform polar and turbo due to their very good minimum Hamming distance properties.

Figure 5 shows performance improvement we find with parity check matrices provided in [7] for the info block 100 and code rate ½. Here, we use LDPC OSD with and without CRC concatenation with quasi-cyclic (QC) LDPC code. 16 CRC bits are appended to the CRC + LDPC simulations, and puncturing is used to limit the codeword to 200 bits. Even with rate matching, we see gains for LDPC + CRC concatenation with OSD decoding.
[image: image3.png]
Figure 5: OSD on Type 1 PCM given in [7] with and without CRC concatenation.

In Figure 6, we illustrate possible gains that LDPC + CRC concatenation can obtain when it is compared to parity check concatenated polar codes (PC-Polar) in [8]. PC-Polar simulation in [8] has not considered CRC overhead required for error detection. For code rate ½ and payload size of 100 bits, additional 24 CRC bits increase the coded block size to 248 bits for PC-Polar. In contrast, coded block size of LDPC + CRC concatenation use in Figure 6 is 232 bits as we append only 16 CRC bits and it is sufficient to provide similar error detection capability to the PC-Polar with 24 CRC bits. From Figure 6, it is evident that LDPC with OSD has more than 1.5 dB gain for the case we evaluate. Therefore, if required, CRC used for error detection in LDPC can also be used to improve the error performance.
[image: image4.png]
Figure 6: CRC concatenated LDPC versus PC-Polar List decoding

2.3
Implementation Aspects

When discussing quasi-ML decoder algorithms, there can be different interpretations for associated implementation complexity. However, many companies use computation complexity justify their proposed quasi-ML type of algorithms, and that is not providing the actual information about the implementation complexity. From Ran1 #84bis, some companies use the number of operations to justify their decoder algorithms while actual implementation reflects the entirely different story. It was well understood from the many implementation complexity studies that counting number of operation does not justify the suitability of that decoder algorithm to practical implementations. Moreover, the computation complexity was not agreed as to evaluate coding schemes, as there are many concerns associated with such calculations. Some specific reasons can be summarized as below.
· The implementation complexity of channel coding schemes for the same algorithmic complexity can vary by several orders of magnitude, depending on the selected implementation style.

· Energy efficiency often depends on the storage schemes, data transfers, puncturing, operating block, and many other aspects. Algorithmic complexity does not provide measure these aspects.

· Supporting flexibility including different code rates, block sizes, and HARQ also heavily influence the implementation complexity and algorithmic complexity is not sufficient to understand such details.

· Benefits of having exact coding constructions can only be identified with the implementation complexity. For example, quasi-cyclic LDPC and randomized design with similar computational complexity can have huge differences regarding implementation complexity. However, when counting the number of operations, they are the same.

Considering many other related aspects, we should not draw conclusions that one specific quasi-ML decoding algorithm is more feasible to implementation compared to rest. The most important aspects is that the code is capable of providing better results with more advanced decoding algorithms than the ones now used in practice.
Implementation aspects of OSD

The computationally most intensive part of the OSD algorithm is the re-encoding step. To reduce the number of re-encoding, a skipping rule has been proposed in [9] where a necessary condition to select the best codeword can be exploited and the number of re-encoding can be reduced by several orders of magnitude. The necessary condition consists in skipping the code words where the weighted Hamming distance of information bits is lower than the best current codeword. A probabilistic sufficient condition based on thresholding the syndrome of a codeword candidate has also been devised in [10] in order to terminate the OSD earlier. Also, re-encoding step can be also easily parallelizable where we do not have any latency concerns.

In [11] pre-processing rules have been proposed where in addition to skip patterns they allow during re-encoding steps of OSD of order i, covering test error patterns from order i+1 and i+2, and accordingly outperforming the original OSD of order i performance. Pre-processing rules can be combined with skipping and stopping rules.

In the particular case of codes on the graph (LDPC, Turbo code), the iterative decoding can be combined with OSD in order to bridge the sub-optimal iterative decoder performance to a quasi-ML performance as it has been done in [1][2][3][12]. One benefit of these approaches is that belief propagation and OSD are universal decoders they can decode any linear code, separately or combined.

These approaches allow a decrease in computational complexity and enable practical implementations [2] [3]. For instance, we can find in [3] the operations required and the computational complexity for order-I reprocessing and for one iteration of BP decoding, respectively. In the hardware implementation, parallelization is possible, and a trade-off has to be found between speed and computational cost.

The combined approach can also be extended by varying the iterative decoding algorithms and replacing the OSD algorithm by other methods as Chase or GMD decoding [2].

Several implementations approach bringing complexity versus performance trade-offs given in [2] for two different augmented BP with OSD algorithms, and where a large set of parameters enable to meet a wide variety of complexity versus performance trade-offs.

2.4
LDPC performance with saturated min-sum decoding
In this section, we evaluate possible performance gains on LDPC codes with a different decoder than offset min-sum. In [1], the authors proposed saturated min-sum (SMS) decoding algorithm with implementation details. We can refer this as a list-decoding algorithm, which is proven with good implementation throughputs when supporting lower block sizes. We followed the procedure explained in the paper and evaluated our PCMs provided in [7]. Figure 7 shows BLER performance when we use list-32 with offset min-sum decoding algorithm. It is evident from the performance investigation, we get 0.5 dB gain with a list-32 decoder, and we can improve the performances further up to the ML bound with further modifications on the SMS algorithm. Further modifications on SMS with better throughputs and performances are shown in [13]. This evaluation further justifies our previous finding on LDPC codes, as a code LDPC is the best code among candidate codes for the eMBB data channel.
Observation 3: There are different decoding options that we could use to improve the performance of LDPC codes at lower block sizes. With list-32 decoding, performances are improved about 0.5 dB compared to offset min-sum decoder.

[image: image5.png]
Figure 7: LDPC with OSD and offset min sum for info block of 128 bits. 50 iteration and 0.22 offset parameter.
3
Conclusion
In this contribution, we presented near optimal performance evaluations for LDPC codes and compared that with several other codes. The observations are,

Observation 1: As a code, LDPC has better performance compared to Polar codes. All codes can improve their short block performance when they use concatenation with other codes.
Proposal 1: CRC concatenation (or any other concatenation) should be used for all codes or not considered at all in order to get a fair comparison of the inherent performance of the codes.

Observation 2: LDPC codes can improve their performances by assuming quasi-ML decoding algorithms, which often outperform polar and turbo due to their very good minimum Hamming distance properties.

Observation 3: There are different decoding options that we could use to improve the performance of LDPC codes at lower block sizes. With list-32 decoding, performances are improved about 0.5 dB compared to offset min-sum decoder.
Reference
[1] Schläfer, P., et al. "A new LDPC decoder hardware implementation with improved error rates." Applied Electrical Engineering and Computing Technologies (AEECT), 2015 IEEE Jordan Conference on. IEEE, 2015.
[2] Varnica, Nedeljko, Marc PC Fossorier, and Aleksandar Kavcic. "Augmented belief propagation decoding of low-density parity check codes." IEEE transactions on communications 55.7 (2007): 1308-1317.
[3] Fossorier, Marc PC. "Iterative reliability-based decoding of low-density parity check codes." IEEE Journal on Selected Areas in Communications 19.5 (2001): 908-917.
[4] Shannon, Claude E. "Probability of error for optimal codes in a Gaussian channel." Bell System Technical Journal 38.3 (1959): 611-656.
[5] Wu, Daolong, et al. "Ordered Statistic Decoding for Short Polar Codes." (2016).
[6] Van Wonterghem, J., Alloum, A., Boutros, J.J. and Moeneclaey, M., 2016. Performance Comparison of Short-Length Error-Correcting Codes. arXiv preprint arXiv:1609.07907.
[7] R1-1609584, “LDPC design for eMBB”, Nokia, ASB
[8] R1-1608864, “Performance Evaluation for NR Channel Coding”, Huawei
[9] Y. Wu and C.N. Hadjicostis, “Soft-Decision Decoding Using Ordered Recodings on the Most Reliable Basis,” IEEE Trans. Inf. Theory, vol. 53, no. 2, pp. 829-836, Feb. 2007.

[10] W. Jin and M. P. C. Fossorier, “Probabilistic Sufficient Conditions on Optimality for Reliability Based Decoding of Linear Block Codes,” IEEE International Symposium on Information Theory, Seattle, WA, pp. 2235-2239, 2006.
[11] Wu and C.N. Hadjicostis, “Soft-Decision Decoding of Linear Block Codes Using Preprocessing and Diversification,” IEEE Trans. Inf. Theory, vol. 53, no. 1, pp. 378-393, Jan. 2007., also has an analytical complexity analysis. But this was asymptotically.
[12] Wei, Yuejun, et al. "A CRC-aided hybrid decoding algorithm for turbo codes." IEEE Wireless Communications Letters 2.5 (2013): 471-474.
[13] Scholl, S., P. Schl, and N. Wehn. “Saturated min-sum decoding: An “afterburner” for LDPC decoder hardware" 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2016.
Figure � SEQ Figure * ARABIC �2� : BLER versus SNR for code length 256 and rate 1/2, 16 bit CRC concatenated to all codes.

