Page 1
3GPP TSG-RAN WG1 #87 	R1-1613086
14th – 18th November 2016
Reno, USA

[bookmark: Source]Agenda item:	7.1.5.1
Source: 	Qualcomm Incorporated
Title: 	Control Channel Complexity Considerations
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction
The control channel performance for LDPC, TBCC, and Polar codes was investigated in the companion contribution [1]. There it was observed that decoding enhancements could be enabled to improve the performance relative to legacy control channels, in particular by introducing list decoding. The purpose of this document is provide more detailed analysis of implementation complexity and latency costs for such enhancements, relative to the well-established TBCC performance for the current LTE control channel. As the wireless network ecosystem has grown accustomed to the area efficiency and latencies of TBCC, it becomes important to understand how different these metrics become when more complicated decoding enhancements are introduced.
In this contribution we focus on the comparison between Polar codes and TBCC.
Computational Complexity
TBCC decoder
	TBCC Decoder Component
	Complexity

	Branch metric calculation
	

	Trellis development for state determination
	

	Trellis development for list decoding
	

	Handling of the final stage and backtrace
	

	Parameters:
· Number of info bits (containing CRC): K
· Number of coded bits per info bit: C
· Number of states: S
· Number of input states per state: (Radix)
· List Size: L

Polar SC-List Decoder
	Polar SC-List Decoder Component
	Complexity

	Single Parity Check
	abs(): sign(): min():

	Repetition
	add()/sub():

	Path Metric Calculation
	abs(): add():

	Sorting
	comp():

	Parameters:
· Number of info bits (containing CRC): K
· Number of coded bits: N
· List Size: L

Computational complexity comparison
In this subsection, we provide an updated computational complexity study for typical control channel use cases for DCI. This was similar to [2] except that we account for the false alarm normalization and updated Polar code constructions as reported in the performance comparison of [1]. Recall also from [1] that significant performance gains were realized with list decoding for both TBCC and Polar codes, and this is even possible to extend to LDPC codes as shown in [3]. By using the analysis of computation complexity in the previous subsections, in addition the performance studies similar to [1], we provide a performance vs. computational complexity as seen below Figure 1.

[image:]
[bookmark: _Ref466958564][bookmark: _Ref466958437]Figure 1 Computational Complexity vs Performance (Normalized False-Alarm Rate)
Here we take an example of comparing TBCC by appending parity (CRC) bits to assist list decoding vs. Polar code concatenated with parity bits as in [1]. We evaluated K = 48 and 64 cases and note the following:
1) False alarm rates of all the points on TBCC and Polar curves are normalized
2) N = 144 * {1, 4}, polar code has to go to a larger FFT size {256, 1024}
3) TBCC L = 1 does not have parity/CRC overhead for list decoding and delivers good performance/complexity tradeoff
Further evaluation of computational complexity reduction can be done, e.g., the current TBCC warm-up is taken to be conservative and it may be further optimized. Overall, the following observations can be made.
Observation 1:
· Polar list decoders (with list sizes up to 8) are needed to achieve similar performance as TBCC decoders without a list.
· As the list decoding size grows, Polar codes and TBCC codes begin to have the similar computational complexity and performance tradeoffs.

In the remaining of this contribution, we compare performance of both with normalized FAR and further evaluate not only from computational complexity point of view, but also implementation complexity/latency/area, etc. aspects of TBCC vs. Polar code with and without list decoding.
Implementation complexity
TBCC Viterbi Decoder Implementation Complexity
To reduce decoding latency, we use a radix-4 Viterbi decoder, where two consecutive trellis steps are merged and processed simultaneously. In this section, we only discuss the implementation complexity of an L=1 decoder. The implemented decoder can be used to perform the state-determination pass in addition to the Viterbi decoding.
Branch Metrics
Each of the radix-4 branch metrics is the sum of two radix-2 branch metrics:

 There are radix-2 branch metrics in the merged radix-4 trellis stage, each of which is calculated according to

 , so multiplying by it can only change the sign of the other operand and can be implemented using a subtractor. Since there are only possible values for the product in a radix-2 trellis stage, only 8 subtractors are implemented to change the sign. Seven adders are needed per branch to compute the metrics. Therefore, the radix-2 branch metric calculators requires 8 subtractors and. adders for each radix-2 trellis stage.
Calculating the radix-4 branch metrics requires adders and calculating the component radix-2 branch metrics requires adders for a total of adders.
State Metrics (Forward Recursion)
The state metric, , for an even-indexed trellis stage, , which corresponds to two bits and , is calculated using an add-compare-select (ACS) unit:

The ACS unit comprises four adders and three maximum value calculations (comparators). To prevent numerical saturation of the state metrics, a constant offset is subtracted from all metrics in a trellis stage when any of the metric exceeds a threshold. The total implementation complexity of the ACS unit and the offsets is adders and comparators.
The backtracking step is excluded from the complexity logic implementation analysis since it only comprises look-ups from memory. It will be included in the memory complexity analysis.
Memory Requirements
The TBCC requires four different memories to be implemented. The first is the input LLR memory, which stores two sets of N channel LLRs of Qc bits each. Double buffering the input LLRs enables the decoder to decode a codeword while receiving another. The state-metric memory stores metrics of Qi bits each. The survivor memory stores M-bit indices.
To facilitate backtracking, the two input bits associated with the winning branch at each state are stored for the entire trellis, requiring bits.
The total internal memory (in bits) is .
[bookmark: _Ref466134717]Area Estimate
We use two Viterbi decoders for convolutional codes in the literature as the bases of the our area estimate for the TBCC decoder. The first is an asynchronous design using a window Viterbi decoder for 802.11a code with M = 6 and rate = ½ [8]. The other is for the same code, but is radix-4 and implements enough traceback memory for K = 64 bits [9].
The code rate in a Viterbi decoder affects the complexity of the branch calculation unit (BMU), which will scale linearly with the inverse of the rate. So the scaling factor will be (1/2)/(1/8) = 4 to utilize the TBCC code described in [1]. This decoder uses nested polynomials and repetition to reach a rate of 1/12.
The traceback memory (TMU) in a non-window decoder will scale linearly with K therefore we scale the TMU in [9] by a factor of 200/64. In a window decoder, the window size 5 times the constraint length, which would be 30 for [8]. Therefore we scale that TMU by factor of 200/30. The table below lists the scaling results, where it can be seen that the expected decoder area is less than 0.05 mm2 in 14 nm technology.
	
	Asynchronous Design
	Synchronous Design

	K, R
	30, 1/2
	200, 1/8
	64, 1/2
	200, 1/8

	TMU
	0.0872
	5.8
	1.27
	3.97

	BMU
	0.06
	0.24
	0.11
	0.44

	Others
	1.03
	1.03
	1.68
	1.68

	Total (mm2)
	1.96
	7.07
	3.1
	6.09

	Total area in 14 nm (mm2)
	
	0.043
	
	0.037

In [12], a polar decoder for control was described. Its maximum block length is 2048. This limits the maximum information block length to 170 bits (including CRC) at R= 1/12. Applying the same scaling as above, but with K = 170, we obtain, areas of 0.038 mm2 and 0.033 mm2 in 14 nm technology for the asynchronous and synchronous designs, respectively.
Polar List Decoder Implementation Complexity
A polar code of length N is the concatenation of two polar sub-codes of length N/2. This concatenation process is applied recursively until sub-codes of length 1 are reached. These length-1 sub-codes either carry an information bit, or a frozen bit. Successive-cancellation (SC) decoding calculates the input to each sub-code recursively until length-1 sub-codes are reached.
Memory Requirements
The decoder requires 2NQc bits to store two sets of channel LLRs. In addition, each list element stores LLRs for a total of LNQi bits of internal LLR memory.
The list decoder also stores an N-bit estimated codeword and N internal bit estimates (also called partial sums) per list item [4].
While the list decoder also stores L path metrics (of Qm bits each), the size of this memory is negligible compared to the rest and we ignore it in this analysis. Therefore, the total memory required by the list decoder is approximately 2N(Qc + 1) + N*L(Qi + 1) bits.
In [7], recalculating LLR values corresponding to the larger stages in the decoder instead of storing them was proposed as method to reduce the decoder memory requirements. The output LLRS for stages , , , and are not stored, reducing the internal LLR memory to LLRs per list element.
The internal memory for the polar list decoder becomes bits. The impact of the LLR recalculation on implementation complexity is discussed in a later section. The memory values reported in [4] include additional memory overhead not captured in this estimate.
To maintain clock frequency, pipeline registers are inserted at the output of the stage recalculation. These pipelining registers are excluded from our analysis.
F and G blocks:
The decoder implements L*P/2 f and g blocks. This number is limited by the available memory width per list item (P).
Each f block performs and consists of two 2s-complement-to-sign-magnitude converters, a minimum-value calculator, and one sign-magnitude-to-2s-complement converter. The converters can be implemented using one adder each and the minimum value calculator can be implemented using a comparator.
Each g block performs or depending on a combination of estimated bits and consists of an adder and a subtractor.
The total complexity of the f and g logic is L*P/2 * (3 + 2) = 5/2LP adders and L*P/2 comparators.
When the LLR recalculation method is used to reduce memory [7], an additional f and g blocks are required, increasing the total complexity to adders and comparators.
Path-metric Sorting
The list of path metrics is sorted using a bitonic sorting network with 2L inputs. The basic building block in a sorting network is a 2-input sorter composed of a comparator and two 2x1 multiplexers. A sorting network with M inputs has 2-input sorters, leading to an implementation complexity of comparators.
Maximum Likelihood Decoder
To decrease decoding latency, the decoders in [4] employ elements of simplified successive cancellation (SSC) list decoding [6], with a restricted sub-code size of 4 bits. One major block in the SSC list decoder is the maximum likelihood (ML) decoding block.
In a 4-bit sub-code SSC list decoder, the ML decoder must decode all sub-codes of length 4 with 3, 2, and 1 information bits. The implementation requires enumerating up to eight codewords, calculating the ML metric of each, and finding the codeword with the largest metric. This requires 24 adders to calculate the metrics and 3 comparators to find the maximum in each list item.
Summary
	
	TBCC (L=1)
	Polar

	Adders
	
	 + 24L

	Comparators
	
	 + 3L

	Internal Memory (bits)
	
	

Example
To numerically compare the two decoders, we use the following parameters:
· Code: N = 1000, K = 200
· TBCC: M = 6, Qi = 10.
· Polar: P = 64.
	
	TBCC
	Polar (L = 8) [4]
	Polar (L = 32)

	Adders/Comp.
	2,560
	3,208 (1.25x)
	3,800 (1.48x)

	Memory (bits)
	13,824
	23,000 (1.6x)
	80,000 (5.8x)

For the polar decoder with list size 32, only the sorting logic and memory were increased to accommodate the larger list size, the estimate only included 8 path processing elements. This was done to limit the increase in decoder implementation complexity and is also performed in [4]. While this approach saves area, it increases decoding latency.
Area Estimate
Here, we extrapolate the area of the TBCC decoder and the polar list decoder with L = 32. For the TBCC decoder, we estimate the area to be between 0.1 mm2 and the values obtained by the scaling performed in Section 3.1.4. For the polar decoder with list size 32, we calculated the area required by the additional memory based on the numbers reported in [4] and added to the area of the L = 8 decoder.
K = 200, R = 1/10
	
	TBCC
	Polar (L = 8) [4]
	Polar (L = 32)

	Area in 14 nm (mm2)
	0.043 -- 0.1
	0.24 (5.5x -- 2.4x)
	0.29 (6.7x -- 2.9x)

K = 170, R = 1/12. The polar decoder is the from [12] and has a flexible list size with L = 8 at N = 2048. The TBCC decoder area is estimated to be between 0.085mm2 and the results calculated from the scaling operation.
	
	TBCC
	Polar (L = 8) [12]

	Area in 14 nm (mm2)
	0.038 -- 0.085
	0.18 (4.7x -- 2.1x)

Observation 2:
· Polar list decoders are expected to require a significantly higher area relative to the TBCC decoder.
Latency
TBCC decoding latency
In the radix-4 decoder, the state-determination pass requires K/2 clock cycles. Similarly, the forward require K/2 clock cycles. Due to the additional branch information stored, the backtracking can be greatly accelerated and will require K/8 cycles when four trellis stages are processed simultaneously. The total latency will be 9/8K cycles.
Polar SC-List Decoder Latency
Using a sorting network, one can sort 2L path metrics in cycles assuming each stage in the sorting network is performed in a cycle. A less conservative estimate assumes that 4 stages can be performed in a clock cycle, reducing the sorting latency to cycles. Since sorting occurs only after an information bit is estimated, the per-codeword latency due to sorting in SC-list decoding is

cycles. Therefore, the total latency of an SC-list decoder is
clock cycles.
SSC-list decoding has lower latency, but it is dependent on the location of frozen bits (the code construction parameters) in addition to the code length and rate. The latency of an SSC-list in clock cycles is the sum of the latency of all sub-codes in the pruned code graph:

where is the length of sub-code i, is the number of cycles required to calculate the sub-decoder’s input, and is the latency due to sorting and pipelining in the sub-code decoder. Note that although latency might be reduced further by increasing memory width P, this will come at a larger cost of logic (and thus area which scales linearly). Moreover, the sorting latency eventually becomes the bottleneck. The sorting could also be reduced, but at greater cost to hardware implementation [7].
 depends on the type of sub-code:
· It is 0 if the sub-code will not be directly decoder, i.e. if the decoder will perform an F or a G function.
· It is the latency of a 2L-input sorting network for rate-1 sub-codes.
· It varies based on sub-code length and rate for ML decoding.

Summary
	
	TBCC
	Polar SSC-List

	Latency (cycles)
	
	

Example
We calculate the single codeword latency for the TBCC decoder and compare with the latency reported in [4] for the polar decoder with L = 8. Because the number of computational elements remained the same in the complexity analysis when increasing the list size from 8 to 32, the latency of the polar decoder with list size = 32 will be at least four times that of the L = 8 decoder.
· Code: N = 1000, K = 200
	
	TBCC
	Polar (L = 8)
	Polar (L = 32)

	Latency @ 1 GHz (us)
	0.225
	0.47 (2x)
	1.880 (8.4x)

Latency in ns of 44 blind decode combinations reported in [12]:
	
	1.4
	3
	5
	10
	15
	20

	(DCI 1A + DCI 1C) + (DCI 1A + DCI 1)
	1707.75
	1818
	1977.75
	2106
	2148.75
	2288.25

	(DCI 1A + DCI 1C) + (DCI 1A + DCI 1B)
	1923.75
	2036.25
	2173.5
	2261.25
	2299.5
	2382.75

	(DCI 1A + DCI 1C) + (DCI 1A + DCI 2)
	1575
	1698.75
	1818
	1894.5
	1944
	2027.25

	(DCI 1A + DCI 1C) + (DCI 1A + DCI 2A)
	1595.25
	1705.5
	1865.25
	1982.25
	2049.75
	2216.25

Comparing the above table with the results reported in [12], and included in the appendix, it is observed that a single TBCC decoder has lower blind decoding latency than the pipelined polar decoder with L = 8.
If we normalize for conservative area estimate, by implementing two TBCC decoders in the area occupied by the polar decoder, we obtain the following 44 blind decodes latency (in ns).
	
	1.4
	3
	5
	10
	15
	20

	(DCI 1A + DCI 1C) + (DCI 1A + DCI 1)
	853.875
	909
	988.875
	1053
	1074.375
	1144.125

	(DCI 1A + DCI 1C) + (DCI 1A + DCI 1B)
	961.875
	1018.125
	1086.75
	1130.625
	1149.75
	1191.375

	(DCI 1A + DCI 1C) + (DCI 1A + DCI 2)
	787.5
	849.375
	909
	947.25
	972
	1013.625

	(DCI 1A + DCI 1C) + (DCI 1A + DCI 2A)
	797.625
	852.75
	932.625
	991.125
	1024.875
	1108.125

Latency will decrease with the number of TBCC decoders implemented. The above table shows that two TBCC decoders have less than half the latency of the pipelined polar decoder. If we normalize with the 25% area estimate for the TBCC compared to the pipelined polar decoder by implementing four TBCC decoder, the latency of the TBCC decoders will be less than 25% that of the polar decoder.

Observation 3:
· Polar list decoders can have significantly higher latency than the TBCC decoder.
· When normalized for area, the latency of TBCC for 44 blind decodes is 25% -- 50% that of a list-8 pipelined decoder.

Proposal 1: TBCC should be adopted for the EMBB control channel to maintain high area efficiencies and very low latencies which will be critical for NR.
Impact on decoding latency
One of the key design requirement in NR is low latency. Ensuring low data transmission/reception latency not only significantly improves single user’s user experience, but also enables a more flexible frame structure to accommodate flexible scheduling, UL/DL switch, resource blanking at the system level to support dynamic TDD, forward compatibility, unlicensed access, etc.
Self-contained frame structure is the key to enable the aforementioned features. It was agreed in RAN1-85 [10], NR should strive to achieve data to ack turn around in DL and grant to data transmission in UL both in the order of tens to hundreds of micro-seconds. Furthermore, in RAN1-86b [11], it is agreed that NR spec should support self-contained operation for slot level scheduling for certain UE categories. Some high level timeline diagrams of self-contained frame structure and associated HARQ turn-around are illustrated in Figure 2. As it can be seen, in order to achieve self-contained operation, receiver processing has to be done in a highly pipelined way, which implies very low decoding latency can be tolerated.

[bookmark: _Ref466809727]Figure 2 self-contained uplink and downlink frame structure and HARQ timeline
As an example, to support self-contained UL data transmission in uplink-centric slot as shown in Figure 3, DL PDCCH processing (including FFT, chanEst, demod + all PDCCH blind hypotheses decoding from all component carriers) has to be turned around in < 0.5~1 OFDM symbol period. The exact available time duration for PDCCH processing is also numerology dependent. Considering the following examples:
· 30kHz (NR sub6 UMa/Umi), available PDCCH processing time < 18~36us
· 60kHz (NR sub6 small cell), available PDCCH processing time < 9~18us
· 120kHz (NR mmWave), available PDCCH processing time < 5~9us
Based on the analysis above, assume 44 hypotheses (i.e., considering only single carrier scenario without multiple PDCCH decoding compounded with multiple PDCCH hypotheses),
· TBCC latency = 10us
· Polar List-8 latency = 20us (2x area)
· Polar List-32, latency = 84us (8x area)
This implies decoding latency is critical to meet the tight timeline. Note also that, if area is further normalized, then Polar decoding latency is 4 ~ 64 times of TBCC. The latency associated with Polar code with large list size practically cannot meet the tight latency requirement to achieve self-contained subframe turn-around.

[bookmark: _Ref466809730]Figure 3 self-contained uplink fast control to data turn-around timeline (14-symbol)
Similarly, as shown in Figure 4, in order to support self-contained DL data reception and ACK in a downlink-centric slot, fast PDCCH processing is also required (in order not to disrupt the data processing pipeline). Note also, for DL, it is also highly desirable even regardless of self-contained operation, in order to achieve efficient power saving and minimizing buffering, as UE quickly sleeps in the absence of DL data grant. In addition, Fast control at start enables UE to start data decoding early, meet UL ACK timeline, speed up link adaptation, and minimize buffering, etc.

[bookmark: _Ref466809732]Figure 4 self-contained downlink fast data to ack turn-around timeline (14-symbol)
Observation 4:
· Control decoding latency is a key performance metric in NR to enable many latency sensitive features, such as fast self-contained processing, URLLC, fast sleep, minimizing buffering requirements, etc.

Conclusions
Observation 1:
· Polar list decoders (with list sizes up to 8) are needed to achieve similar performance as TBCC decoders without a list.
· As the list decoding size grows, Polar codes and TBCC codes begin to have the similar computational complexity and performance tradeoffs.

Observation 2:
· Polar list decoders are expected to require a significantly higher area relative to the TBCC decoder.

Observation 3:
· Polar list decoders can have significantly higher latency than the TBCC decoder.
· When normalized for area, the latency of TBCC for 44 blind decodes is 25% -- 50% that of a list-8 pipelined decoder.

Observation 4:
· Control decoding latency is a key performance metric in NR to enable many latency sensitive features, such as fast self-contained processing, URLLC, fast sleep, minimizing buffering requirements, etc.

Proposal 1: TBCC should be adopted for the EMBB control channel to maintain high area efficiencies and very low latencies which will be critical for NR.
References
[1] [bookmark: _Ref466126674][bookmark: _Ref466023781][bookmark: _Ref466124095]Qualcomm, Incorporated, R1-1612088, “Control channel performance”, RAN1 #87, Reno, USA, 2016.
[2] [bookmark: _Ref466127422]Qualcomm, Incorporated, R1-1610141, “Short blocklength design”, RAN1 #86bis, Lisbon, Portugal, 2016.
[3] [bookmark: _Ref466958348]Qualcomm, Incorporated, R1-1612081, “Short blocklength LDPC codes”, RAN1 #87, Reno USA, 2016.
[4] [bookmark: _Ref466127440][bookmark: _Ref466130268]Huawei and HiSilicon, R1-1608865 “Design aspects of polar code and LDPC for NR,” RAN1-86bis, Lisbon, Portugal, 2016.
[5] Lin et al. “Design of a Power-Reduction Viterbi Decoder for WLAN Applications,” IEEE TCAS-I, Vol. 52, No. 6, 2005.
[6] [bookmark: _Ref466127622]Lin et al, “A High Throughput List Decoder Architecture for Polar Codes,” T-VLSI, Vol 24, No. 6, Jun. 2016.
[7] [bookmark: _Ref466128085]Huawei, HiSIlicon R1-167213 “Computational and implementation complexity of channel coding schemes,” RAN1 86, Gothenburg, Sweden.
[8] [bookmark: _Ref466133752]Kawokgy and Salama, “Low-power asynchronous Viterbi decoder for wireless applications,” ISLPED’04, 2004.
[9] [bookmark: _Ref466134143]Lin et al. “Design of a Power-Reduction Viterbi Decoder for WLAN Applications,” IEEE TCAS-I, Vol. 52, No. 6, 2005.
[10] [bookmark: _Ref466809249]RAN1 85 chairman’s notes
[11] [bookmark: _Ref466809255]RAN1 86-b chairman’s notes
[12] [bookmark: _Ref467067424]Huawei and HiSilicon, R1-1613300, “Design Aspects of Polar and LDPC codes for NR,” RAN1 #87, Reno, USA, 2016.

Appendix
Latency of 44 blind decodes of pipelined polar decoders. Copied from [12].
[image:]

[bookmark: _GoBack]

11/11
image1.emf
10

1

10

2

10

3

10

4

-0.5

0

0.5

1

1.5

2

calculation complexity count

1e-2 BLER achieving SNR

Computational complexity per info-bit (K=64, rate=1/3)

L=1

L=1

L=2

L=2

L=4

L=4

L=8

L=8

L=32

L=32

PC-Polar

TBCC

10

2

10

3

10

4

10

5

-7

-6.5

-6

-5.5

-5

-4.5

calculation complexity count

1e-2 BLER achieving SNR

Computational complexity per info-bit (K=64, rate=1/12)

L=1

L=1

L=2

L=2

L=4

L=4

L=8

L=8

L=32

L=32

PC-Polar

TBCC

10

2

10

3

10

4

0

0.5

1

1.5

2

2.5

calculation complexity count

1e-2 BLER achieving SNR

Computational complexity per info-bit (K=48, rate=1/3)

L=1

L=1

L=2

L=2

L=4

L=4

L=8

L=8

L=32

L=32

PC-Polar

TBCC

10

2

10

3

10

4

10

5

-7

-6.5

-6

-5.5

-5

-4.5

-4

computational complexity count

1e-2 BLER achieving SNR

Computational complexity per info-bit (K=48, rate=1/12)

 L=1

 L=1

 L=2

 L=2

 L=4

 L=4

 L=8

 L=8

 L=32

 L=32

PC-Polar

TBCC

image2.emf
Self-contained

control interval

Fast ACK Fast response to grant

Self-contained

control interval

... ...

Single-interlace operation

Fast grant (in response

to previous interval)

oleObject1.bin

image3.emf
0 1 2 3 4 5 6 7 8 9 10 11

Uplink-Centric Slot

PUSCH

12 13

P

D

C

C

H

uplink

g

u

a

r

d

g

u

a

r

d

oleObject2.bin
Text

PUSCH

0

1

2

3

4

5

6

7

8

9

10

11

Uplink-Centric Slot

uplink

guard

12

13

PDCCH

image4.emf
PDSCH

0 1 2 3 4 5 6 7 8 9 10 11 12

13

g

u

a

r

d

Downlink-Centric Slot

g

u

a

r

d

P

U

C

C

H

(

A

C

K

/

N

A

K

)

Downlink

P

D

C

C

H

oleObject3.bin
Text

PDSCH

guard

guard

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Downlink-Centric Slot

Downlink

PUCCH (ACK/NAK)

PDCCH

image5.png
44 PDCCH blind decoding latency (us) with Polar List 8 decoder

Cases 1.4M 3M M 10M 15M 20M

(DCI 1A+DCI 1C) + (DCI 1A+DCI 1) 2.077 2.23 2.342 2.57 2.62 2.673
(DCI 1A+DCI 1C) + (DCI 1A+DCI 1B) 2.09 2.19 2.297 249 2.507 2.557
(DCI 1A+DCI 1C) + (DCI 1A+DCI 2) 2.262 2.402 2.433 2.6 2.627 2.717
(DCI 1A+DCI 1C) + (DCI 1A+DCI 24) 2.237 2.38 2.497 2.67 2.647 2.72

