Page 1
[bookmark: OLE_LINK6][bookmark: OLE_LINK7]3GPP TSG RAN WG1 Meeting #87 	 R1-1612587
Reno Nevada, November 14– 18 Nov 2016
[bookmark: Source]Agenda item:	7.1.5.1
Source: 	Intel Corporation
Title: 	Discussion on Control channel coding for NR
[bookmark: DocumentFor]Document for: Discussion
1. Introduction
In this contribution, we provide some overview, observations and performance evaluations related to control channel coding scheme(s) for NR. This contribution is an updated version of R1-1609512.
2. Discussion
There are multiple types of control information that need to be considered as part of control channel coding and each may have different payload size and requirement per se. For instance, we list below some control information types and related aspects that need to be considered.
· Downlink control information
· For downlink control (such DCI on UESS or CSS), typical payloads of 24~80 bits, blind decoding intensive, decoding latency is important (e.g. to facilitate pipelining data decoding) and area/efficient implementation is important. False detection and techniques to mitigate falsing (e.g. CRC attachment) is also an important consideration.
· For broadcast system information (such as PBCH) ~40 bit payload is considered, very low coding rate, and commonality with downlink control is desirable to reduce implementation complexity. However, the block size and coding rate is expected to not significantly varying, e.g. like LTE PBCH. For downlink system information type transmissions (e.g. such as SIBs in LTE), similar coding scheme as data channel can be utilized.
· Uplink control information
· Very small payloads (e.g. ~1-20 info bits) that use specific block codes e.g. that may be separate from the downlink control coding.
· In LTE, e.g. PCFICH, Reed-Muller (RM), dual-RM, etc
· Small to medium payloads (e.g. ~24-80 info bits) which may share some commonality with downlink control coding. However, on the uplink the processing capabilities may be different than downlink (e.g. no blind decoding or very tight latency as on downlink control)
· In LTE, e.g. TBCC is used
· Larger payloads (e.g. 80-400 info bits, typically UCI on PUSCH such as aperiodic CSI with ~32 carriers) which may share commonality with downlink control/.data coding depending on the degree of optimization.
· In LTE e.g. TBCC is used for UCI on PUSCH, but for large sizes, coding gains (e.g. turbo/LDPC/Polar) could be provide performance benefit.
3. Control channel candidates
In this contribution, we discuss the candidates mainly from a downlink control channel related aspect. We recognize that in the very small payload (e.g. 1-20 bits) there exist block codes such as RM, Polar, etc which may need to be separately compared.
3.1. TBCC
Tail-biting convolutional code (TBCC) was introduced in Rel-8 LTE (instead of a 256-state tailed CC) as a coding scheme most suitable for small to medium payload control channels. Subsequently, TBCC was utilized for many other purposes (in LTE) such as for encoding uplink control (on PUSCH), as well as NB-IOT downlink data/control channels for cost reduction, etc. TBCC is decoded using Circular Viterbi algorithm, where the average number of iterations is function of the operating BLER, and for a target BLER of ~1%, the average number of iterations is ~ 1.2 [4].
To further improve performance of convolutional code, list decoding of VA has been proposed in literature. In list decoding VA, at each trellis stage and state, multiple strongest paths are maintained, and at the end of decoding, tracebacks yield multiple information bit estimates, and an error checking code such as CRC used to select the correct estimated information bit sequence. It is noted that at very small information block sizes (such as 8-16 bits), adding a CRC code (e.g. of length-8) can lead a large overhead, implying that the excessive puncturing to maintain the code rate may lead to inferior performance of List VA compared to standard VA. If the CRC code for list pruning is not separate from CRC used to control falsing, list Viterbi decoding will lead to increased falsing.
List size = 1 (i.e. CVA) and list size = 4 with 8-bit CRC are used for the TBCC simulation results in the Annex.
From implementation perspective, Viterbi implementations are well known and require simple path metric calcluators and ACS logic (ACS). For storage (TBCC), the internal decoder requires trace-back paths for 64-states, which corresponds to K*64 bits (one hard decision bit) - for information length of K=60 bits, the memory required is 60*64 = 480 bytes. In terms of logic, the TBCC requires logic for state metric update - 64 ACS units (2 adders and 1 comparator) and branch metric (16 adders for rate-1/3, if need to complete within one clock cycle, and assuming branch metric can be reused at a given trellis stage across different ACS units), leading to a total of 144 adders and 128 selectors. The input LLR memory may typically be common amongst different coding schemes (assuming same mother code rate) and is hence not considered here.
3.2. Polar code
We proposed in May meeting ([5][6]) a true CRC-less Polar Code design. The design does not require concatenation of Polar code with an inner code (e.g. CRC or a special parity-check code) for list-pruning, or assistance in list decoding. Performance of the true CRC-less PC code design with list decoding (with requiring CRC for pruning) was shown to be very good (See [3]) and since it does not rely on CRC, there is no impact on falsing rate which is important for downlink control channels. [3] also shows that the CRC attachment could improve the slope of the PC performance curve.
List size = 4 was used for the PC simulation results in the Annex.
The performance of CRC-less PC is shown with two techniques for rate-matching -
· Shortening based rate-matching
· For input block of length K and rate-R, a Polar code encoder of length-2n is used, where n corresponds to the smallest integer such that 2n >= K/R. Details of the Polar code data bit positions and frozen bit selection is described in [5][6]. In shortening based rate-matching, a bit-reversal based shortening is applied (as described in sec 6 of [5], but using bit-reversal to identify the S encoder bits to shorten instead of the last S encoder bits as shortened).
· Puncturing based rate-matching
· For input block of length K and rate-R, a Polar code of length-2n is used, where n corresponds to the smallest integer such that 2n >= K/R. Details of the Polar code data bit positions and frozen bit selection is described in [5][6]. In puncturing based rate-matching, the output code word of length-2n is punctured using a pre-determined permutation (i.e. fixed puncturing pattern) to obtain codeword of length K/R.
· The puncturing patterns are shown in the attached text file (‘intelPCPuncPattern1.txt’) for N=64,128,256,512 and 1024. For example, consider a puncturing pattern of length N=8, denoted by puncP8 = [6,0,3,5,2,1,4,7]. If a codeword of length-M (=6) is required, the codeword bits corresponds to first N-M bits get punctured i.e. the output coded bits at location 6 and 0 get punctured i.e. using Figure 3 of [5] as reference, X6+1 and X0+1 (i.e. X7 and X1) get punctured.
For Polar code, the internal memory (excluding the input LLR memory which can be common to all coding schemes) is driven by the list size (L) and the code word length (N). The total memory is around N*L*Q, where Q is the internal precision. So, assuming an information length of 60 bits, and rate-1/3, the memory required will be ~ 256*4*5 ~ 450 bytes (with list size 4) and 900 bytes with list size 8. For Polar code, the number of adders and comparators could potentially be larger (e.g. see [8]) than TBCC, depending on the exact implementation details, e.g. primary contributors to the complexity are f and g blocks (equivalent to check node update and variable node update functionality with LDPC) and list sorting function, which requires a sort of 2L values, and the sub code decoders (e.g. if SSC decoder is used instead of pure SC list decoder).
In [10][11], details of possible polar decoder implementation and parity-check polar code design were described for both data and control channel. It is our understanding that for control channel scenario (as shown table 4 in [10]) a single segment parity-check polar design is being proposed. We note (in a companion paper [9]) that the latency related to parity-check polar encoding may need to further analysed considering stringent latency for control channels – for example, there are a number of pre-processing steps (e.g. identifying PC-frozen, shortening, frozen and data positions, encoding PC-frozen, etc) that are required prior to populating the input of the polar encoder and all these steps have to be performed (on the decoder side) prior to beginning a blind decoding attempt for a given block length and rate. An alternative to avoiding latency is to pre-process and store in a vector the pre-processing result for every combination of block length and rate, but that may require lot storage.
Furthermore, the estimated area and latency in [10] seems to be based on a particular set of assumptions (selective-path-extension (SPE) with a ratio of 70%, etc) which could be bit restrictive on the hardware implementations (e.g. the SPE ratio tuning might not be as easy given the trade-offs between the SPE ratio/performance/latency may not be straight-forward). Moreover, it could be clarified if the latency values cited in [10] (e.g. in table 10) are an average latency or a worst case latency and whether the latency can be met for all combinations of block lengths and rates with the same SPE. In contrast, for turbo/LDPC/TBCC, latency is a fairly straightforward controllable decoder parameter (e.g. through number of iterations, etc). Therefore, we think such aspects related to encoding/decoding should be further considered while discussing control channel coding schemes.
It would also good to further study the performance of other candidate coding schemes for control channels including LDPC coding, Reed-Muller coding, etc. In particular, for LDPC coding, the inherent CRC check (decoder stops after converging to a valid codeword) can provide some benefits in achieving same false alarm rates with a smaller CRC overhead.
4. Performance and observations
For reference, in the Annex, we also show performance of the LTE turbo code for three code rates – 2/3, ½ and 1/3 based on eight iterations max-log-MAP + extrinsic scaling. For rate-1/6, if a native rate-1/5 turbo code is utilized, the performance of turbo code at rate-1/6 can be improved also.
We observe the following based on the simulated scenarios:
· Observation 1: TBCC can outperform PC at small block sizes (less than ~50 bits) for all rates.
· Observation 2: Polar code can outperform TBCC typically at larger block sizes (~80 bits or larger) or a low rates.
· Observation 3: Between 50-80 bits, TBCC and PC performance curves cross over for different rates.
· Observation 4: Performance of TBCC improves with list size – list decoding gains are more prominent at large block sizes.
5. Conclusion
In this contribution, we discuss some aspects related to control channel coding schemes, and draw following observations based on our simulated scenarios.
· Observation 1: TBCC can outperform PC at small block sizes (less than ~50 bits) for all rates.
· Observation 2: Polar code can outperform TBCC typically at larger block sizes (~80 bits or larger) or a low rates.
· Observation 3: Between 50-80 bits, TBCC and PC performance curves cross over for different rates.
· Observation 4: Performance of TBCC improves with list size – list decoding gains are more prominent at large block sizes.
We propose to look at further details related to the implementation aspects, including complexity and encoding/decoding latency.
References
[1] R1-166557	Intel, Comparison of channel coding schemes for NR, RAN1#86
[2] R1-166559	Intel, Performance evaluation of channel coding schemes for NR, RAN1#86
[3] R1-167703	Intel, Channel coding scheme for URLLC, MMTC, and control channels, RAN1#86
[4] R1-072451	Ericsson Complexity and Performance Improvement for Convolutional Coding, , RAN1#49
[5] R1-164184	Intel, Polar code design for NR, RAN1#85
[6] R1-164185	Intel, Polar code constructions for evaluations, RAN1#85
[7] R1-167703	Intel, Channel Coding scheme for URLLC, MMTC, and control channels RAN1#86
[8] R1-166373	Qualcomm, Short block-length design, RAN1#86
[9] R1-1612585, Intel, Discussion on EMBB data channel coding for block lengths less than X, RAN1#87
[10] R1-1608865, Huawei, HiSilicon, Design aspects of Polar Code and LDPC for NR, RAN1#86bis
[11] R1-1608862,	Huawei, HiSilicon, Polar Code Construction for NR	RAN1#86bis

Performance results (Annex A)
[bookmark: _GoBack][image: final_LDPC_pc_TBCC_list SNR vs Block length_v2]
Figure 1 SNR vs Block length simulations for control channels.

4/4
image1.png

