Page 1
[bookmark: OLE_LINK6][bookmark: OLE_LINK7]3GPP TSG RAN WG1 Meeting #87                                                   	  R1-1612586
Reno Nevada, November 14– 18 Nov 2016
[bookmark: Source]Agenda item:	7.1.5.1
Source: 	Intel Corporation
Title: 	LDPC design for data channel
[bookmark: DocumentFor]Document for:     Discussion
1. Introduction 
In RAN1#86bis, RAN1 agreed that LDPC is the channel coding scheme for EMBB data, at least for block sizes >X. 
Agreement:
· The channel coding scheme for eMBB data is LDPC, at least for information block size > X
· FFS until RAN1#87 one of Polar, LDPC, Turbo is supported for information block size of eMBB data <= X
· The selection will focus on all categories of observation, including overall implementation complexity, regardless of the number of coding schemes in the resulting solution (except if other factors are generally roughly equal)
· The value of X is FFS until RAN1#87, 128 <= X <= 1024 bits, taking complexity into account
· The channel coding scheme(s) for URLLC, mMTC and control channels are FFS

In this contribution, we provide some design principles for progressing the LDPC code design. The parity-check matrices and BLER results mentioned in this document were already submitted in last meeting ([10]) and hence not included again for brevity. It is further noted that the BLER results data (in [10]) were already captured by moderator in last meeting and the aggregated BLER data was submitted by the moderator as a post-meeting contribution (for information) to RAN1#86bis in [11].
2. LDPC code design aspects
A key attractive feature of LDPC is that they lend themselves to higher degree of parallelism, which can lead to very high throughputs as well as reduced latency in both encoding and decoding. Structured LDPC codes based on shifted Identity matrices originally proposed by Tanner have been used as fundamental building blocks for several designs (such as 802.11n, 802.16e, etc.). 
A structured LDPC code with codeword length n = z∙nb and information block k = z∙kb, and a shift size z (sub-block size or lift size), has code rate r = k/n = kb/nb. The LDPC encoder encodes an information block i = i0, i1,i2…ik-1 into a codeword c, of size n, c = (c0, c1,….ck-1,ck….cn-1). In systematic encoding, the first k bits of the codeword are typically the same as information bits i.e. cj = ij, for j = 0 to k-1. The codeword c satisfies the parity-check equations H∙cT = 0, where H is the m x n parity-check matrix, and m = n-k.
The parity-check matrix H can be partitioned into square blocks (submatrices) of size z x z. These submatrices are either cyclic-permutations of Identity matrix (or shifted Identity matrix) or null matrices. For instance, a cyclic permutation matrix Pi is obtained from the zxz Identity matrix by cyclically shifting the columns to the right by i elements. The matrix P0 is zxz Identity matrix. For convenience, P-1 may be used to denote the null matrix of size z xz. 
For example, for z = 5, the following show example matrices,



 ,,.
Using the above notation, parity-check matrices for large block sizes can be defined using a very compact notation. For example, an expanded matrix HM (mb x nb) may be used to denote the mbz x nbz binary parity-check matrix obtained by using a compact base matrix Hbm (mb x nb) and a shift size value z. 
Encoding
Linear time encoding is facilitated through the adoption of a parity-check matrix that has dual-diagonal parity-check portion. This enables a repeat accumulate like structure for determining the parity-check bits [5]. The repeat accumulate structure can be applied at block level to enable efficient high-speed encoding. For supporting incremental redundancy, single-parity-check based encoding can also be applied at block level. 
Decoding
Structured LDPC codes also support layered belief propagation decoding algorithm which can converge faster (in number of iterations) relative to standard belief propagation decoder. In the decoder, the check node update (CNU) can be performed on each layer (or a block row) at a time. If further reduced latency is desired, the CNU can be performed on multiple layers simultaneously. Thus, the LDPC code design should be flexible enough to allow the decoder to choose the desired amount of parallelism based on the desired throughput/latency requirements. This would be analogous to LTE turbo code interleaver that enables different levels of parallelism based on the target data rate/latency. 
As shown in contribution [1], typical LDPC decoding complexity is mainly driven by the three major factors – memory, logic for check node update, and permutation network [7] and in that order and that with a suitable selection of shift sizes, base matrix and maximum shift size, the decoder complexity can be kept reasonable.
Flexibility in block size support
In previous RAN1 meetings, it was agreed that channel coding scheme for NR supports information block size flexibility and codeword size flexibility. First, we discuss the block size flexibility. 
Similar to the LTE turbo codes, the block size selection needs to consider underlying code structure. For example, in LTE, the block sizes were byte-aligned and cover the range 40-6144 with different step sizes, starting with step size of 8 at lower end and growing to a step size of 64 bits at the higher end. This was done to enable LTE to support windowed turbo decoding with up to 64 parallel MAP processors at the higher block sizes. 
In principle, LDPC codes can be designed to support any arbitrary information/code block size. However, considering efficient encoding/decoding, it is desirable to support a selected set of block sizes that can be natively designed for LDPC. The other information block sizes in between can be supported via zero-padding operation (similar to the LTE turbo code). Thus, with LDPC, it is possible to support similar granularity of information block sizes as LTE turbo code. 
For example, assume a rate-1/3 design based on 49 x 73 base matrix (i.e. mb = 49, nb = 73) as in the attached parity-check matrix. The expansion of this matrix using different shift size values z yields parity-check matrices that support information block size of 24z. 
There are two ways to support flexible information block size with LDPC codes:
· Parity-check matrix scaling 
· If z = {1,2….320}, the natively supported information block sizes are Kinfo1 = {24, 48, 72…..7680} and the other sizes in between e.g. 32, 56, etc can be supported via zero-padding operation. In principle, each expanded matrix (for a particular z value) can be designed independently, but compact techniques to derive expanded matrices for different z values from one expanded matrix are also feasible. For example, modulo or scaling techniques can used as in [6]. Thus, these set of information block sizes can be also supported without requiring any zero-padding operations.
· The parity check matrix for the maximum desired shift value (e.g. zmax = 320) can be designed and scaling operation (such as modulo scaling) can be used to derive the prototype matrix for other supported z values. For obtaining the matrix for a given z value, each value in the parity check matrix is computed by modulo operation of the corresponding entry in the original matrix, and the desired z value i.e. x is replaced by x mod z. 
· In another example, a different set of z values can be supported natively e.g. z = {1,2,4,6,8…320}, i.e. the natively supported information block size are Kinfo2 = {24,48, 96,….7680}, for which the remaining information block sizes  (32, 40, etc) can be handled again through zero-padding. 
· Zero-padding
· For any other input block sizes that are not natively supported by LDPC code, zero-padding operation can be used. Zero padding is a well-known technique which works well, and is also used in other coding schemes such as turbo code, polar code, etc.

From a decoder perspective, additional features may be desirable when considering the set of shift values to be supported. For example, the set of z = {1,2….512} may be too fine granular compared to LTE (where there are only ~200 QPP interleaver sizes). Thus, some decimation can be considered if it can provide benefits in decoder implementations, e.g., {4 8 16 24 40 80 160 256 320} or {1 2 3 4 5 6 7 8 8:2:32 32:4:64 64:8:128 128:16:256 256:32:320 } and zero-padding used for supporting other information block sizes. As shown in [1], with suitable shift size selection, the desired range of block sizes can be supported. 
Proposal 1: Shift-size scaling for efficient block size support is supported for LDPC.  
Proposal 2: Zero-padding is supported with LDPC for efficient block size support. 

HARQ/Code rate support
A limited set of code rates can be natively designed for LDPC. Other code rates in between can be achieved via puncturing/repetition/zero-padding operation. Another way to achieve flexible code rate is to support parity-check matrix extension, which also supports IR-like operation. 
LDPC codes are typically designed for a particular code-rate/block-size combination and similar to LTE turbo codes, puncturing/shortening can be used to achieve different codes rates. However, if puncturing is used to obtain a higher rate code from a very low mother code rate (lot more parity-checks with punctured variable nodes), then from decoder perspective, more operations may be required (similar to turbo code where ops count is same irrespective if the code is operating at 1/3 or 5/6). Thus, another option to support HARQ-IR is to try to achieve lower code rates by parity-check matrix extension. For example, assume the parity-check matrix HTx1 is used to encode an information block to generate parity-bits for 1st transmission (as shown below). Thus the codeword in the first transmission can be [i p], where i denotes systematic bits and p denotes the parity-bits.






If a retransmission based on IR is desired, then the parity-check matrix HTx1 can be extended by adding sub codes (or additional parity-check rows) to generate a new set of parity-bits for the second transmission. This extension is shown below. Thus, the codeword in the second transmission can be [i p q], where q denotes the additional parity-bits available for transmission. One benefit of such IR based extension is that the amount of extension can be controlled by design. For example, consider the peak rate-like scenario with large packet sizes/very high data/MCS (1st transmission rate close to 0.9). It may be possible to support only small extensions (e.g. to rate-6/7) to maintain throughput/latency target in the decoders compared to a typical scenario (e.g. low-to-medium MCS), where extension can be supported to code rates such as 1/3 (as in LTE) or even lower. Thus, we propose to consider parity-check matrix extension techniques for supporting IR-HARQ.
Proposal 3: Parity-check matrix extension for supporting efficient rate-matching and Incremental redundancy operation with LDPC code is supported.
3. Code designs for evaluations 
RAN1 agreed for initial evaluations of different channel coding schemes in RAN1#84bis. In the text file (intelLDPC_EMBB_86bis.txt) in [10], we provided LDPC parity-check matrix for z=320 and that can be used with modulo scaling to support other Z values (as shown in Table 1) that support coding parameters applicable to eMBB scenarios. Note of course, this is for evaluation as the value of X is still under discussion in RAN1. The parity-check matrix shown in [10] and the supported shift values cover more block sizes. The actual set of block sizes that are simulated are shown in Table 1. There are around 80 block sizes that were simulated with different settings. 
· Number of natively supported information block sizes simulated is 38 (minimum block size is 192 (Z=8), and max is 7680(Z=320))
· Number of information block sizes simulated with 3% zero-padding is 38
· Number of information block sizes simulated with 12%~16% zero-padding is 5 (for Z = 64) 

The performance results are shown in the Annex A (same curves as from [10]). Note that these matrices are provided for evaluations and it is expected that the designs can be refined further based on agreed design details. Zero padding is inserted at the end of information bits (i.e. systematic portion) and zero-padding bits are skipped during the bit selection for transmission over the channel.
For a given code rate, one base matrix is used with different shift size values (z) to support the block sizes closest to those selected for evaluations – modulo scaling is used in the evaluations in [2]. The same matrix is then used for different code rates – the first z systematic bits are always punctured. 
Table 1. Parameters of the proposed parity-check matrices for evaluations.
	Code rate
	Base matrix size
	Shift size values used for encoding
	Info  sizes

	{1/3,1/2,2/3,3/4,5/6,8/9}
	5x29 (@r-6/7) extension to
49x73 (@r-1/3)
	Z =  [8 16 32:8:48 64:8:320]
	24Z 

	
	
	Z = [8 16 32:8:48 64:8:320]
	[24Z*(1-0.03)], 
Note: 3% zero-padding on info blocks for encoding

	
	
	Z = 64
	[24*Z*(1-zp)]
where zp = [0.12,0.13,0.14,0.15,0.16]
Note: up to 16% zero-padding on info blocks for encoding



[bookmark: _GoBack]The performance is shown in Annex A– both Offset-Min Sum and Exact kernel (SP) were simulated. Difference between Offset Min-sum (offset value = 0.5) and exact kernel (SP) is typically around ~0.25 dB or less for medium to high rates and closer to 0.4~0.5 dB at lower rate (1/3) and this can be enhanced using further optimization of the kernel algorithms which can be handled via implementation for example, adjusted min-sum algorithm as shown in [12].
Another example of a parity-check matrix based on IR-extension was shown in [9], where a rate-1/3 matrix is extended down to rate-1/6. This was used with a different set of z values for showing performance for URLLC/MMTC scenario. However, it is noted such parity-check matrices can also be applied to EMBB scenario if rates lower than 1/3 need to be supported natively, rather than through repetition. 
4. Conclusion
In this contribution, we provide an overview of structured LDPC codes, including the aspects related to encoding/decoding/flexibility in terms of block-sizes/code-rate/IR-HARQ support. We also provide some parity-check matrices for performance evaluations. We propose the following for progressing work on the agreed LDPC code for EMBB block sizes greater than X: 
Proposal 1: Shift-size scaling for efficient block size support is supported for LDPC.  
Proposal 2: Zero-padding is supported with LDPC for efficient block size support. 
Proposal 3: Parity-check matrix extension for supporting efficient rate-matching and Incremental redundancy operation with LDPC code is supported.
References	
[1] R1-166557	Intel, Comparison of channel coding schemes for NR, RAN1#86
[2] R1-1609511	Intel, Discussion on Data channel coding schemes for NR, RAN1#86bis
[3] Motorola, “LDPC Decoding for 802.22 Standard” IEEE P802.22, 2007
[4] [bookmark: _Ref129768371][bookmark: _Ref109034136]R1-060874, “Complexity Comparison of LDPC Codes and Turbo Codes”, 3GPP TSG RAN WG1#44bis, Athens, Greece. 27 - 31 Mar 2006.
[5] A. Nimbalker, Y. Blankenship and B. Classon, “Turbo-like decoding algorithm for structured LDPC codes”, ISIT 2006.
[6] 802.16e, LDPC design
[7] “Error control coding for B3G/4G  wireless systems : Paving the way to IMT-Advanced standards”, Wiley, April 2011.
[8] M. Rovini, G. Gentile, and L. Fannucci, “Multi-size circular shifting networks for decoders of structured LDPC codes,” Electronics Letters, Aug 2007. 
[9] R1-167703, Intel, Channel coding scheme for URLLC, MMTC, and control channels, RAN1#86 Gothenberg
[10] R1-1610682, Intel “Channel coding scheme for EMBB”, RAN1#86bis, Lisbon
[11] R1-1611071, Interdigital, “NR Channel Coding BLER Database” RAN1#86bis, Lisbon
[12] R1-1612585, Intel, “Discussion on EMBB data channel coding for block lengths less than X”, RAN1#87, Reno, Nevada.


Annex (Performance of LDPC code)
[image: NewIntelLift_1BLER_all_20iter_morepoints]
Figure 1. SNR required vs Block size for 10% BLER. 
[image: NewIntelLift_01BLER_all_20iter_morepoints]
Figure 2. SNR required vs Block size for 1% BLER.
[image: NewIntelLift_001BLER_all_20iter_morepoints]
Figure 3. SNR required vs Block size for 0.1% BLER.




7/7
oleObject2.bin

image3.wmf
ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

0

     

0

     

0

     

1

     

0

0

     

0

     

0

     

0

     

1

1

     

0

     

0

     

0

     

0

0

     

1

     

0

     

0

     

0

 

0

     

0

     

1

     

0

     

0

2

P


oleObject3.bin

image4.wmf
[

]

p

s

Tx

H

H

H

1

1

1

=


oleObject4.bin

image5.wmf
ú

û

ù

ê

ë

é

=

q

p

s

p

s

Tx

H

H

H

H

H

H

2

2

2

1

1

2

0


oleObject5.bin

image6.jpeg

image7.jpeg

image8.jpeg

image1.wmf
ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

1

     

0

     

0

     

0

     

0

0

     

1

     

0

     

0

     

0

0

     

0

     

1

     

0

     

0

0

     

0

     

0

     

1

     

0

0

     

0

     

0

     

0

     

1

0

P


oleObject1.bin

image2.wmf
ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

0

     

1

     

0

     

0

     

0

0

     

0

     

1

     

0

     

0

0

     

0

     

0

     

1

     

0

0

     

0

     

0

     

0

     

1

1

     

0

     

0

     

0

     

0

4

P


