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1. Introduction
In this contribution, we simplify our previous code design [1] and remove one of the proposed base graphs to reduce the implementation complexity. To fill the gap of the removed base graph, base graph 1 has been extended further to cover lower code rates.
2. Description of Proposed Set of LDPC Codes
[bookmark: _GoBack]We consider a family of rate-compatible LDPC codes based on protographs, which has been described in detail in our previous contributions [1] and [2]. In this contribution we keep the code structure shown in Figure 1 and simplify the design of the set of rate-compatible LDPC codes that we propose to cover the full range of information block lengths and code rates needed for NR. To reduce the implementation complexity, we have removed the base graph that was called “BG2” in [1] and extended base graph 1 further to rate 1/4 instead of rate 1/3.
The basic structure of the parity check matrix (PCM) H is illustrated in Figure 1. The first 2 × Z systematic bits are always punctured (the set of bits corresponding to the yellow columns of the PCM), a structure that has been shown to reduce the threshold of the code [3]. Some of the remaining systematic bits are always transmitted, while some of them may be shortened if an information block length Ktx, with Ktx<K, is desired, where K is the native information block length of the parity check matrix (PCM). The first Mb×Z parity bits, as well as the bits corresponding to one or two degree one columns (the set of bits corresponding to the orange parity bit columns and a few green parity bit columns illustrated in Figure 1), gives the highest rate code. The rate may be reduced by transmitting additional parity bits from the incremental redundancy part, as described by the rightmost part of the matrix. In case of shortening, or a desired code rate higher than the highest design rate, some of the parity bits (orange) can be punctured. The rate-matching algorithm is described in detail in [4].
Check-nodes connected to the variable-nodes of the incremental redundancy part that are not transmitted can be deactivated when decoding to reduce complexity.
[image: ]
[bookmark: _Ref458797878]Figure 1. Illustration of LDPC code structure.

The LDPC codes considered here are quasi-cyclic codes, similar to the protograph-based raptor-like LDPC codes proposed in [5]. Quasi-cyclic parity-check matrices are partitioned into square sub-blocks (sub-matrices) of size Z × Z. These submatrices are either cyclic-permutations of the identity matrix or null submatrices. The cyclic-permutation matrix Pi is obtained from the Z × Z identity matrix by cyclically shifting the columns to the right by i elements. The matrix P0 is the Z × Z identity matrix. Quasi-cyclic LDPC codes are conveniently described through a base matrix, which is a matrix where each integer i denotes the cyclic-permutation matrix Pi. Entries with i = -1 in the matrix denote null (zero) submatrices.
The set of proposed LDPC base graphs is described in Table 1. For each base graph, a specific parity-check matrix is obtained by selecting a lifting size Z with a corresponding base matrix, and replacing each entry with the corresponding Z × Z matrix. The PCM with exactly the desired code rate and information block length may then be constructed from the PCMs described in Table 1 through rate matching [4]. Base matrices describing the different base graphs and liftings are given in the attached file. The parameters shown in Table 1 are listed below, without considering the effect of rate matching.

· Kb,max is the maximum number of information nodes in the base graph.
· Kb,min is the minimum number of information nodes in the base graph, after shortening is applied. The maximum number of bits that can be shortened is therefore (Kb,max - Kb,min ) * Z.
· Kmax is the maximum number of information bits supported.
· Kmin is the minimum number of information bits supported after shortening is applied.
· Ndeg1 is the number of degree-1 variable nodes included in the parity-check matrix with the highest rate.
· Rmax is the maximum code rate supported.
· Rmin is the minimum code rate supported.
· The Z values shown in the table are the Z values for which the base graph can be lifted. 


[bookmark: _Ref462125875]Table 1 LDPC base graphs
	
	Kb,max
	Kb,min
	Kmax
	Kmin
	Ndeg1
	Rmax
	Rmin
	Z

	Base graph 1
	32
	22
	16384
	176
	2xZ bits
	8/9
	1/4
	Lift 1: 8, 12, 16, 24
Lift 2: 32, 48, 64, 96
Lift 3: 128, 192, 256, 384, 512

	Base graph 2
	10
	6
	960
	48
	Z bits
	2/3
	1/4
	Lift 1: 8, 12, 16, 24
Lift 2: 32, 48, 64, 96

	Base graph 3
	6
	4
	336
	32
	Z bits
	1/2
	1/5
	Lift 1: 8, 10, 12, 14
Lift 2: 16, 20, 24, 28
Lift 3: 32, 40, 48, 56




The different considerations that led us to this proposed set of LDPC base graphs and parameters are discussed in detail below. The main consideration is the tradeoff between performance and implementation efficiency.

2.1. Selection of Block Lengths and Code rates
The parameters in Table 1 have been selected based on the NR requirements, with the aim to achieve good BLER performance while keeping the hardware complexity low. A requirement for high area efficiency is that the maximum codeword size is low enough to ensure high efficiency not only for very long codewords but also the smaller codewords that a flexible LDPC decoder must handle. Here we have designated the maximum codeword length N to less than or equal to 49 152 bits for all PCMs. 
Another design choice is the maximum block length Kmax, which we limit to 16 384 bits. With the maximum codeword length Nmax and maximum info block length Kmax given, we may calculate the lowest code rate that we can support for a given info block length under these conditions as

This means that the minimum code rate 1/4 cannot be used together with the maximum info block length K=16 384. Only code rates above Rmin = 0.34 are allowed in combination with the maximum info block length. This limitation is only needed for base graph 1, that is intended for high-throughput.
The decoding complexity is proportional to the number of edges in the parity-check matrix and the decoding latency is proportional to the number of rows, or check-nodes, in the base graph. To achieve low code rate with the proposed rate-compatible code structure, code extension is performed. This means that both complexity and latency increases when the code rate decreases. The tradeoff between BLER performance on one hand and decoding complexity and latency on the other is discussed in detail in [6], which shows the BLER performance reduction in comparison to the reduction in complexity and latency when lower code rates are achieved through repetition of already transmitted bits. As a good tradeoff between BLER performance and complexity/latency, we have designed the proposed codes with the minimum code rates specified in Table 1.

2.2. [bookmark: _Ref462908149]Lifting and Granularity of Code Sizes
The base graphs are lifted with circulant matrices of size Z × Z. The lifting sizes Z for which the lifting has been optimized are specified in Table 1, where they are also grouped. The permutations of the circulant matrices are optimized for each group of Z values, here denoted by “Lift J”, separately for each group. 
The entries in the base graph that correspond to non-zero sub-blocks take values between 0 and , where  is the maximum Z in the lifting group. To generate the PCM   corresponding to smaller Z values, the following formula is used:

where  If an entry is larger than , this is equivalent to the right shift of the binary representation of  by  steps.
In terms of BLER performance, one could optimize a set of circulant matrices for each lifting size Z. However, to achieve a good tradeoff between BLER performance and hardware area efficiency, it is of importance to keep down the number of lifting sizes Z that the decoder must handle. 
To find a good tradeoff, we have considered the impact of shortening on BLER performance and based on this decided on the maximum number of variable nodes that may be shortened. A BLER increase is associated with the shortening, but by limiting the number of shortened variable nodes we also limit the BLER increase. With the shortening limited, the contiguous range of info block sizes k that can be achieved with a specific lifting size Z combined with rate matching is given by 

Given the allowed shortening, we have selected a small set of lifting sizes Z that balances the need of covering a wide range of information block sizes and the need of not defining an excessive number of Z values. From a hardware efficiency perspective, lifting sizes Z that are powers-of-two are especially desirable. Therefore, the different base graphs have different (Kb,max) values that are not a factor of two of the Kb,max of other base graphs. This implies that the lifting sizes Z that are powers-of-two gives different info block sizes k for each base graph, thereby increasing the spread of the info block sizes. This means that different k values may be achieved without shortening for the different base graphs, thereby allowing selection of a base graph for which the desired k may be achieved with a low number of shortened bits. Note that the selected set of lifting sizes Z is not the smallest possible which covers the range of possible k values, but instead they are chosen to have sufficient coverage of information block sizes. 
In the proposed LDPC matrix design, the circulant sub-blocks are circularly shifted diagonal matrices only. Our investigation shows that implementation complexity increases without BLER performance gain, if some of the circulant sub-blocks are allowed to be super-imposition of multiple circularly shifted diagonal matrices. Hence for the QC-LDPC design, it is desirable that the non-zero sub-blocks have circulant weight =1. Circulant weight is the number of superimposed circularly shifted ZZ identity matrices.


3. LDPC Code Performance
The parity-check matrices designed for NR are simulated for the agreed code rates and block lengths. Simulation results for eMBB with the sum-product algorithm, flooding schedule and running a fixed number of 50 decoding iterations are shown in the appendix for eMBB. 

4.  Conclusion

In this contribution, we present a set of LDPC codes designed to fulfil the NR requirements for eMBB, URLLC and mMTC.  Based on the discussion, we have the following proposal:

1. Adopt multiple base graphs to provide sufficient code size and code rate flexibility for NR.
1. Use code extension in parity matrix construction to provide incremental redundancy (IR) HARQ for NR.
1. Use power-of-2 expansion factors (i.e., lifting sizes Z) for QC-LDPC as much as possible.
1. For the QC-LDPC design, the non-zero sub-blocks have circulant weight =1. 
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