3GPP TSG RAN WG1 Meeting #87	R1-1611254
Reno, USA, November 10th - 14th, 2016

Agenda Item:	7.1.5.1
Source:	Huawei, HiSilicon
Title:	Details of the Polar code design
Document for:	Discussion and Decision

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Introduction
This contribution presents details of the polar code design presented in [1] and [2]. In [1] it was introduced an SNR-independent rate-matching method that supports a nested frozen-bit-set selection from a single ordered sequence and fine-granularity. In [2] the design was improved by using PC (parity-check)-frozen bits to prune the list tree on the fly rather than using CRC-aided list-tree path selection at the final stage. This improvement addressed the concern of the use of CRC bits for error correction discussed in earlier meetings [8]. Polar code and a PC-SCL (Successive-Cancellation List) decoder are described. Simulation results show that the design suitable for both data [3] and control channels [4] can reach or outperform a (CRC-Aided) CA-SCL decoder. This contribution summarizes previous contributions and further elaborates the design details of polar NR.
Design overview
Figure 1shows a PC (Parity-Check)-polar code construction, in which a subset of the frozen-subchannel set is selected as PC-frozen-subchannels. Over these sub-channels, a PC (parity-check) function is established for error correction. At each parity-check sub-channel position, all the decoded bits involved into the PC function over this PC-frozen-subchannel would help prune the list decoding tree: only the paths that meets the PC-function/PC-frozen bit would survive, the rest are eliminated on the fly. Obviously, the PC function must be established as forward-only to be consistent with any SC (successive-cancellation)-based decoder.

[bookmark: _Ref465784943]Figure 1 Parity-Check polar code
A well-constructed polar code with a proper PC function over some well-chosen PC-frozen subchanels increases its minimum-coding-distance, thereby improving the coding performance (coding gain and BLER curve slope).
In [5] a chained polar code was presented, in which a long code word is divided into several shorter code words (segments) and all segments are decoded in parallel. As shown in Figure 2, these segments are concatenated with some PC functions called “cross-parity-check” functions to differentiate from the PC functions applied to PC-frozen subchannels within a single segment as “self-parity-check” function. The information bits of one segment are cross-checked onto the PC-frozen-sets of another segment.

[bookmark: _Ref462442755]Figure 2 Example of concatenated polar code with 2 parallel segments
This technique reduces the decoding latency because segments can be decoded in parallel. Both the self-parity-check function and the cross-parity-check function are forward-only function so that the SC nature of the polar decoder can be kept. Additionally, a serial segmentation method [6] can be used on top of the parallel segmentation method to further reduce the memory required for decoding.
Table 1	Used notations
	K
	information bits length

	M
	code block length

	N
	mother code block length, equal to

	L
	list size of SCL decoder

	R
	code Rate (K/M)

	Q
	ordered bits position sequence

	P
	puncture-set

	F
	Frozen-set

	PF
	PC-frozen set

	W
	parity-check matrix

	n
	number of the segments

 Polar code construction
Polar code construction is divided into four stages: information/frozen-subchannel-set selection, PC-function setup, Arikan polar encoding, and shortening/puncturing. In the following text, to avoid confusion, we call the positions before Arikan Encoding as sub-channels, and those after Arikan Encoding as codeword or coded bits.

Figure 3 Four stages of Polar Code Construction and Encoding
In the stage of set determination, the encoder decides the types of the sub-channels. One sub-channel corresponds into one bit (frozen, information or PC-frozen bit). According to polarization theory, the reliability (or mutual channel capacity) on each sub-channel are different from each other. The sub-channels with high reliability are chosen to transmit the information bits. The set of these sub-channels’ positions is named as information-set (I). The sub-channels with the unreliable sub-channels are set to zero and the set of their positions is denoted as frozen-set (F). Some sub-channels are selected to transmit the PC bits and the set of their positions is denoted as PC-frozen-set (PF). The total number (N) of the sub-channels of one polar block must be a power-of-two value and is named as mother code block length (N = I + F + PF).
In the second stage of the determination of set values, the information bits are set to the sub-channels of the information-set (I) and zeros to those of the frozen-set (F). The parity-check bits are calculated by a parity-check function and then put to the sub-channels of the PC-frozen-set (PF).
In the third stage of Arikan encoding, the encoder multiples this N-sized sub-channel block by a Kronecker matrix into an N-bit code word.

In the fourth stage of shortening and puncturing, the N-bit code word is shortened into M-sized code length by a puncture-bit set (P). An illustration of PC polar code construction can be seen in figure 5.
Given a combination of code rate (R) and code length (M), both encoder and decoder have to compute this frozen-set (F), PC-frozen set (PF) and shortening-puncture-bit set (P) by one deterministic protocol.
Ordered-Sequence and Punctured Set
Ordered-sequence Q
Due to the fact that a polar code with a mother code length N that is a power of two can be regarded as a nested combination of two polar codes of length N/2, we construct an ordered sequence of bit positions (index sequence) such that this ordered sequence for the polar codes of length N/2 is a subset of the ordered sequence for the polar codes of length N. Such a sequence for the polar code of maximum code length Nmax , where Nmax is a power of two, then covers any combination of code rate and code length (of power of two) smaller than Nmax in a nested way. Rate matching can then be performed at low complexity and with very fine granularity. The generation of the ordered index sequence is an offline operation.
The SNR-independent reliability estimation is done by computing the reliability of each sub-channel (offline operation), and storing the ordered index sequence for the polar code of maximum code length Nmax. The reliability order of sub-channels is estimated through a weight sequence , calculated as follows

Assume with ,,
then,
 	
where n = log2(N).
Example:
Consider the example with maximum mother code length Nmax= 16, n=log2(16) = 4 and for i=3 (), W3 can be calculated as:
W3 = 1*2 (0*(1/4)) + 1*2 (1*(1/4)) + 0*2(2*(1/4)) + 0*2 (3*(1/4)) = 2.1892
The full weight vector is =[0 1 1.1892 2.1892 1.4142 2.4142 2.6034 3.6034 1.6818 2.6818 2.8710 3.8710 3.0960 4.0960 4.2852 5.2852], where a larger value suggests a higher reliability.
Once is obtained, the next step is to sort it such that . , and save the corresponding index sequence as . The resulting sequence to be stored is
.
Note that is either computed on-the-fly or loaded directly from the memory so that there is no need to compute it for every encoding & decoding rate-matching operation.
If Polar code is used only for the information block shorter than 1024 bits, an 8K ordered sequence is needed to cover all code lengths and code rates.
Shortening/Puncturing Pattern
The puncturing pattern is computed in a deterministic way. Simply bit-reverse the descending-ordered binary indices [0, 1, …, N-2, N-1] and mark the N-M indices with highest bit-reversed value as punctured positions.
Example:
Consider the same example of Nmax=16. Both encoder and decoder store the sequence . There are 4 bits (4=N-M) to be punctured to obtain the code length M, compute the length-4 puncturing pattern P by bit-reversing the sequence of [12(1100), 13(1101), 14(1110), 15(1111)] (= [M, …N-3, N-2, N-1]) as = [BitRev(M), …, BitRev(N-3 .

Figure 4 Construction of a PC-based Polar Code
Information, Frozen, and Parity-Check Set Selection
The PC-frozen-set (PF) is firstly determined in terms of the polarization reliabilities, row-weights of Kronecker kernel in term of the sub-channel index and shortening/puncturing pattern (P).
The first three steps determine the code configuration, defined as (wmin, f1, f2), i.e., the row-weight(s) and sizes of PC-frozen set on the fly. For calibration purposes, we list the values of (wmin, f1, f2) for all the simulated cases in the Appendix.
Step 1~3: Obtaining code configuration (wmin, f1, f2)
1) Compute the number of the candidate PC-frozen sub-channels: .[footnoteRef:1] [1: The total number of pre-flagged PC-frozen bits should not exceed N-K. In practice, Fp is upper bounded by (N-K)/2, and is set to a value larger than 1, e.g.,.]

2) Move all sub-channels in P to the leftmost (as in Figure 5) and then divide the rest sub-channels into two subsets in an ascending order of the reliabilities as indicated by Q.

Figure 5 Sub-channels Division
3) Find the smallest row-weight within the (K+Fp)-subset of the sub-channels and denote it as wmin , and n 	the number of such sub-channels. Compute f1=(Fp+min(Fp,n))/2, f2=(Fp-min(Fp,n))/2. If the number of sub-channels with weight wmin in the (K+Fp)-subset is less than f1, then set f1=n and add half of the remaining amount in f1 to f2, i.e., f2= f2 +(f1-n)/2.
Step 4~5: Implementing code configuration (wmin, f1, f2)
4) Select the candidate PC-frozen sub-channels in the (K+Fp)-subset
a) Select f1 sub-channels with a row-weight of wmin from right to left as frozen sub-channels and select f2 sub-channels with a row-weight of 2×wmin from right to left as candidate PC-frozen sub-channels.
5) Determine the information-set, PC-frozen-set and frozen-set
a) Select the information sub-channels from the rightmost to the leftmost and skip the frozen sub-channels and candidate PC-frozen sub-channels in Step 4 until K sub-channels are chosen.
b) Select the remaining subchannels as the frozen subchannels.
c) Select from the frozen sub-channel positions that have a row-weight equal to that of PC-frozen sub-channels (i.e., wmin and 2×wmin) as additional PC-frozen sub-channels. [footnoteRef:2] [2: If a PC-frozen bit is before the 1st information bit, it is equivalent to a frozen bit.]

Parity-Check Function
A cyclic shift on a register with length of a prime value is used for the parity check function. Assume {a0,a1,,,aN-1} is the bit sequence obtained in Step 2.
1. Initialize a p-length cyclic shift register, y[0],…,y[p-1], to 0
1. for i = 0 to N-1
read the i-th bit, ai
cyclic left shift the register
if ai is an information bit: the bit is unchanged, update y [0] = (ai XOR y[0])
if ai is a PC-frozen bit: set ai =y [0]
if ai is a frozen bit: set ai = 0
end for
The equivalent cycle shift register operation is shown below.

Figure 6 	Equivalent cycle shift register operations
A PC (parity-check)-SCL decoder used for decoding is described in [5]. The cyclic shift register operation at the decoder is the same as the encoding procedure.
Example:
The PC function is defined by a PC matrix . Assume the code block length is , and the information bit length is .
Using the construction method in [1], we obtain the bits position sequence Q of sub-channels:
.
By step 1.1, Fp is calculated as 6. By step 1.2~1.3, wmin and n are 2 and 3, respectively. Because n<Fp, we select f1=3 sub-channels with row-weight wmin =2 and f2=3 sub-channels with row-weight 2×dmin = 4 as PC-frozen bits. By descending reliability order, these PC-frozen bits are .
Then, we mark the information and additional frozen bits according to Q. The information-bit set is and the frozen-bit set is . By selecting the frozen bits with row-weight 2 and 4, we further get the PC-frozen-bit set .
Finally, we use a prime-length cyclic register with p=5 to build parity functions for each PC-frozen bit in . It is easy to see that the cyclic register connects the bits with a constant spacing 5. For , , and , they are equivalent to static-frozen bits since no information bits can be checked with spacing 5. For , and , the parity functions are , and , where , and are information bits.
Using the above method, we construct the parity-check matrix for the polar codes as

[bookmark: _Ref465442713][bookmark: _Ref462841683]Figure 7 Parity-Check Matrix for Polar Construction
From we obtain as static frozen bits, , and as PC-frozen bits with the self-parity-check functions being , as shown in Figure 7.
Segmentation
The motivation to segment a long codeword in smaller codewords is to reduce the decoding latency and improve hardware efficiency.
Parallel Segmentation
In Figure 8, we show a non-segmented polar code with a parity-check function. The u vector consists of the information bits and frozen bits that are put onto the information-bit set and frozen-bit set. Then some parity-check bits are computed and put onto the PC-frozen set to form a vector x. After multiplication of x by a N-dimension Kronecker matrix, the coded bit vector is y. At the decoding side, a SC-based decoder will recover the u vector one bit after another.

[bookmark: _Ref462787707]Figure 8 Non-Segmented Polar Code
If an encoder permutes the vector x as in Figure 9 then the decoder can be segmented into two parts (red and blue) from the . Each segment can have its own decoder, channel LLRs inputs, (self-)-parity-check, and chained with each other by a cross-parity-check (spitted from the parity-check). The constraints over the are derived from x, which enables the information bits (u) to be easily recovered from the decoded bits of the two separated parallel decoders.

[bookmark: _Ref462842314]Figure 9 A Dual-segment Polar Code

A parallel decoding procedure is illustrated below:

Figure 10 Decoding Segmentation Procedure
Step #1,#2:
The two steps are those (step-1 and step 2) steps in the section 2 to generate the Frozen bits position set, PC-frozen bits position set, and Information bits position set (F,PF,I) given a (M,N,K).
Step #3:
We generate the parity-check matrix V and segmented (F’,PF’,I’) for each segment from the non-segmented W and (F,PF,I) from step 2.
Let’s continue the example (M=16, K=8) in Section 2. We give an example for generating the parity-check matrix for the chained polar codes for m=2 (dual)-segmentation. Since is the result of one-step polarization of with permutations, we define the transformation matrix as), that is, the Kronecker product of the identity matrix and Polar code kernel , and permuting the rows. The permutation is to rearrange the order of , which is for the two-segment case. Multiplying the transformation matrix with the original parity-check matrix (and after some elementary row operations), we obtain the equivalent parity-check matrix for the chained polar codes as

[bookmark: _GoBack]Figure 11 Dual-Segmented Decoder
From we obtain as frozen bits, as self-parity-check PC-frozen bit with parity function being , and and as cross-parity-check PC-frozen bits with cross-parity-check functions being , and for the chained polar code. Here, belong to the first segment, and belong to the second segment. It should be noticed that includes the self-parity-check points and functions and cross-parity-check points and functions in general.
Step #4:
In step 4, we separate the received N soft bits value (LLR) into m segments for parallel decoding like Figure 10. The output of the parallel decoder is the partial sum of original information, i.e., . Then, applying one-step polarization procedure, the decoded bits are finally obtained.
For the parallel polar decoder structure, instances of PC-SCL decoder are implemented and work in parallel. The parity check matrix from Step#3 for the cross-check and self-check are used in the parallel decoding process. At each decoding step, each PC-SCL decoder extends the paths and computes the path metrics independently. At the cross-parity-check bits, the path metrics of the paths that satisfy the cross-checks between different PC-SCL decoders are exchanged and combined, i.e., the paths belonging to different PC-SCL decoders are bound when their cross-checks are satisfied and the paths that violate the cross-checks are safely killed. Then, each PC-SCL decoder does path sort and prune in full parallel. And by the output decision at final stage, we can get two decoded bits in parallel.
Since the decoding steps are decreased from N to N/m, the decoding latency is reduced. Further, the construction is based on the long code, ensuring that the performance of the parallel decoder can approach that of the long polar code. The proposed parallel decoder is easier to implement, as the log-likelihood and path metric are updated independently in each PC-SCL decoder corresponding to the segments.
Proposal-1: Parallel-segmented PC-Polar Code can be used to help increase the parallelism of the decoder and reduce the decoding latency.
Serial Segmentation
Considering an approach similar to [6] which provides a method to reduce the memory complexity with a serial subcode decoding process, we combine PC-SCL decoder [2][5] and subcode-wise segmentation [6].
Figure 12 illustrates a four-segment design of a (N,K) polar code.

[image:]
[bookmark: _Ref465442828]Figure 12 PC-SCL Polar subcode-wise segmentation design

In the encoder side, the following steps are followed:
Step 1: Compute the bits position sequence of length N with polarization weight and sort the weight sequence.
Step 2: As shown in Figure 12, choose the K most reliable positions from the sorted N sequence and place K information bits in these positions, dividing the code length N into m segments equally where N is a positive integer power of 2 and m=log2(N), each segment includes a different subset of the information bits.
Step 3: Construct the segments independently using PC-SCL polar codes to obtain constructed codes. Find out the positions of information bits, frozen bits, dynamic frozen bits and rate-matching sequence.
Step 4: Align segments into N length codes and encode the codes using Polar encoder with length N to obtain an encoded message. Align rate-matching sequences of segments into N length codes and rate matching the encoded message.
In the decoder side, the following steps are followed:
Step 1: De-rate matching the sequence of received LLR and input into Polar SC decoder.
Step 2: Update LLR groups in Polar SC decoder across PC-SCL decoders.
Step 3: Decode the first LLR group in PC-SCL decoder to obtain decoded segment of information bits. Encode the decoded segment of information bits into encoded bits. The encoded bits represent hard decisions that are used to update the LLR groups in Polar SC decoder prior to decoding the following LLR groups, the list size of PC-SCL decoder may vary from segment to segment.
Step 4: Repeat the decoding and updating cycle to serially decode all other LLR groups and align the decoded segments of information bits to obtain a decoded message.
In the encoding/decoding design above, PC-SCL decoding is applied subcode-wise while partial SC decoding is used across subcodes to exploit the polarization gain. The overall decoder complexity is reduced from large PC-SCL decoder, i.e., O(LN), to a small PC-SCL decoder plus a partial SC decoder, i.e., O(LN/m + N). With PC-SCL Polar subcode-wise segmentation decoding, the complexity for decoder can be very much reduced by increasing the number of segments.
Proposal-2: Serial-segmented PC-Polar Code can be used to help decrease the memory size and reuse the computation resource of the decoder.
Performance Evaluation
In case of K from 8 bits to 8000 bits and R from 1/12 to 8/9, the simulation results show that polar code has good and stable performance over the entire range of code rates/block lengths, hence showing the capability of covering the whole NR scenario including eMBB, mMTC, uRLLC data and control channel. More simulation results can be found in [9] [10] and [11].
Some optimized rules can be used to find a punctured set P compared to the method described in [1]. A rate-dependent puncturing method for polar codes was proposed in [7]. The method is simple and can achieve good performance for low code rate and small block lengths.
Evaluation for Self-Parity Enabled Construction (shown in Section 3)
· Simulation results for K = {1000}, List size = {8,32}
 [image:]
[bookmark: _Ref465442903]Figure 13 BLER performance for info. block length = 1K with various code rates

· Simulation results for K = {4000}, List size = {8,32}
 [image:]
[bookmark: _Ref465442908]Figure 14 BLER performance for info. block length = 4K with various code rates
In Figure 13 and Figure 14, the red curves refer to the PC-polar codes as described in Sec. 1 (dotted line is the PC-SCL-8 decoder, solid line is the PC-SCL-32 decoder), the magenta curves refer to the conventional polar codes as in [1] (with CA-SCL-32 decoder), and the blue curves are the turbo reference. We observe that the PC-polar code exhibits a good and stable performance. With a PC-SCL list 8 decoder, it can reach the similar performance of a CA-SCL-list 32 decoder for a conventional polar at high code rates. When both are using list 32 (PC-SCL-32 and CA-SCL-32), the PC-polar code has better performance except at some very low coding rate, and the gain of a PC-polar code becomes larger as the coding rate increases.
Observation-1: PC-SCL-8 nearly reaches the performance of CA-SCL-32 especially at high code rates.
Evaluation of Concatenated Polar and Parallel Decoding
We show the performance of concatenated polar codes (shown in Section 4) with two segments by using the encoding and parallel decoding methods described in Sec. 2.
· Simulation results for code block length () = 4096, list size = 32 [image:]
[bookmark: _Ref465442970]Figure 15 Concatenated Polar Performance for 2 segments, Code Block Length = 4096

· Simulation results for code block length () = 8192, list size = 32
[image:]
[bookmark: _Ref465442976]Figure 16 Concatenated Polar Performance for 2 segments, Code Block Length = 8192

In Figure 15 and Figure 16, the red solid curve is the 1-segment PC-polar code, and dashed magenta curve is the dual-segment PC-enabled polar code. We fix the code block length to 4096 and 8192 for an easier performance evaluation of the segmentation or chain.
Observation-2: No performance degradation due to dual-segmentation was observed.
Evaluation of PC-SCL Polar with subcode-wise segmentation and Serial Decoding
Figure 17 and Figure 18 show BLER curves for info bits length K=1000 for all eMBB and URLLC coding rates with and without segmentation. To simplify the design of the decoder, we fix the decoder length of each segment to 1024, therefore the number of segments varies with coding rate. List size 32 and 8 for each segment are used for decoding and shown in Figures 18 and 19, respectively. The red solid curves indicate segmentation results while blue ones indicate no segmentation results. From the results, it can be proved that limited performance loss can be achieved in all cases even with 16 segments.
· Simulation results for info length K=1000, decoder length of segments () = 1024, list size = 32
[image:]
[bookmark: _Ref465443436]Figure 17 PC-SCL Polar subcode-wise segmentation with list size 32 for all decoders
· Simulation results for info length K=1000, decoder length of segments () = 1024, list size = 8
[image:]
[bookmark: _Ref465443440]Figure 18 PC-SCL Polar subcode-wise segmentation with list size 8 for all decoders
Observation-3: The performance degradation due to subcode-wise segmentation is small or negligible.
Conclusion
This contribution describes the details of the polar code construction for NR control channel and data channel. It is shown that the polar code has good and stable performance with a PC-SCL decoder and supports the fine-granularity rate-matching scheme for all NR scenarios, including eMBB/mMTC/uRLLC and control channel.
Proposal-1: Parallel-segmented PC-Polar Code can be used to help increase the parallelism of the decoder and reduce the decoding latency.
Proposal-2: Serial-segmented PC-Polar Code can be used to help decrease the memory size and reuse the computation resource of the decoder.
Observation-1: PC-SCL-8 nearly reaches the performance of CA-SCL-32 especially at high code rates.
Observation-2: There’s hardly performance degradation due to the dual-segmentation.
Observation-3: The performance degradation due to subcode-wise segmentation is very limited and sometime negligible.
In summary, the proposed design has the following characteristics:
· Supports a nested fine-granularity rate-matching scheme
· Has a deterministic and simple code construction
· A concatenated encoding scheme can be used to fully parallelize the decoding architecture, reducing latency.
· Achieves good performance and flexibility for NR scenario, information bits length from 8 to 8000 and longer, code rate from 1/12 or lower to 8/9.
References
[bookmark: _Ref465171735]R1-167209, “Polar code design and rate matching Polar Codes: Encoding and Decoding”, Huawei, HiSilicon
[bookmark: _Ref465171508]R1-1608862, “Polar code construction for NR”, Huawei, HiSilicon
[bookmark: _Ref465171990]R1-1608864, “Performance Evaluation for NR Channel Coding” , Huawei, HiSilicon
[bookmark: _Ref465171992]R1-1608863, “Evaluation of Channel Coding Schemes for Control Channel” , Huawei, HiSilicon
[bookmark: _Ref465185570]R1-167216, “Channel coding for control channels”, Huawei, HiSilicon
[bookmark: _Ref465501730]R1-1609338, “Resolving Polar code memory complexity issue”, MediaTek Inc.
[bookmark: _Ref465359155]R1-167533, “Examination of NR Coding Candidates for Low-Rate Applications”, MediaTek Inc.
[bookmark: _Ref465346435]R1-164356, " Performance Evaluation of TBCC and Polar Codes ", Ericsson
[bookmark: _Ref465523964]R1-1611256, “Performance evaluation of channel codes for small block sizes”, Huawei, Hisilicon
R1-1611257, “Performance evaluation of channel codes for control channel”, Huawei, Hisilicon
R1-1611692, “Channel coding schemes for URLLC scenario”, Huawei, Hisilicon

Appendix: Code Configuration Tables
Code Configuration for eMBB
	wmin,f1,f2
	100
	400
	1000
	2000
	4000
	6000
	8000

	1/5
	32,12,0
	32,5,7
	32,2,11
	32,1,13
	64,20,0
	64,20,0
	64,21,0

	1/3
	16,13,0
	16,4,9
	16,1,13
	32,19,0
	32,21,0
	32,17,4
	32,15,5

	2/5
	8,1,8
	16,10,4
	16,5,10
	16,3,13
	16,2,14
	16,1,15
	16,1,16

	1/2
	8,10,1
	8,1,10
	16,17,0
	16,14,3
	16,9,8
	16,7,10
	16,6,11

	2/3
	4,3,7
	8,15,0
	8,7,7
	8,5,10
	8,3,12
	8,2,14
	8,2,14

	3/4
	4,11,0
	4,1,10
	8,15,0
	8,17,0
	8,16,1
	8,7,8
	8,11,7

	5/6
	2,1,6
	4,5,5
	4,4,7
	4,2,10
	4,1,12
	4,1,12
	8,18,0

	8/9
	2,2,4
	4,11,0
	4,12,1
	4,8,4
	4,4,9
	4,3,10
	4,3,10

[bookmark: _Ref465790978]Code Configuration for uRLLC[footnoteRef:3] [3: Note that when mother code rate is less than 1/4, information block length is less than 200 and code rate is less than 0.4, a rate-dependent deterministic puncturing scheme described in [7] has been adopted.]

	wmin,f1,f2
	20
	40
	200
	600
	1000

	1/12
	32,4,4
	64,10,0
	64,4,7
	64,1,10
	128,16,0

	1/6
	16,4,4
	32,10,0
	32,5,7
	32,1,10
	64,17,0

	1/3
	8,9,0
	8,3,6
	16,9,4
	16,2,10
	16,1,13

Code Configuration for Control3
	wmin,f1,f2
	8
	16
	32
	48
	64
	80
	120
	200

	1/12
	32,8,0
	32,2,5
	64,10,0
	64,1,8
	64,3,7
	64,7,4
	128,13,0
	64,4,7

	1/6
	16,8,0
	16,2,5
	32,10,0
	32,1,8
	32,4,6
	32,8,3
	64,13,0
	32,5,7

	1/3
	4,1,5
	8,4,4
	16,11,0
	16,2,7
	16,5,5
	16,12,0
	16,1,9
	16,9,4

	1/2
	2,1,3
	4,8,0
	4,1,6
	4,1,7
	8,11,0
	8,12,0
	8,6,4
	8,4,7

	2/3
	2,2,0
	2,2,2
	4,8,0
	4,11,0
	4,7,3
	4,4,5
	4,2,7
	4,1,9

image2.emf
Information bit Set Frozen Bit Set

Information bit Set

Information bit Set

PC Frozen

bit set

Self-Parity-check Function

PC Frozen

Bit set

Frozen Bit Set

Frozen Bit Set

Self-Parity-check

Function

Cross-Parity-check Function

Segment#0

Segment#1

oleObject2.bin
Information bit Set

PC Frozen bit set

Frozen Bit Set

Information bit Set

Information bit Set

Self-Parity-check Function

PC Frozen Bit set

Frozen Bit Set

Frozen Bit Set

Self-Parity-check Function

Cross-Parity-check Function

Segment#0

Segment#1

image3.emf
Pre-Encoding Processing

Determine Set:

Information Set I

Frozen Set F

Parity-Check Set PF

Puncture Set P

Determine Set Values:

Set I according to info. bits

Set F=0

Set PF by parity-check function

Arikan Encoder

Shortening/Puncturing

Based on Puncture Set P

N

Subchannels

N

Subchannels

N

Codewords

M

Punctured

Codewords

oleObject3.bin
Determine Set:
Information Set I
Frozen Set F
Parity-Check Set PF
Puncture Set P

Determine Set Values:
Set I according to info. bits
Set F=0
Set PF by parity-check function

Arikan Encoder

Shortening/Puncturing
Based on Puncture Set P

Pre-Encoding Processing

N Subchannels

N Subchannels

N Codewords

M Punctured Codewords

image4.emf
a. Calculate weight sequence by

b. Sort

Wi

in ascending order and save the ordered

index sequence

Qi

Calculate puncture pattern

P

P = [BitRev(M), BitRev(M+1),…,BitRev(N-1)]

a. Calculate

F

p

 by

b. Divide the subchannels (in ascending order of

weight) into three subsets (

N-M,M-K-F

p

,K+F

p

)

c. Find

w

min

 as the smallest row-weight within the

(

K+F

p

)-subset

d. Find

n

 as the number of sub-channels in the

(

K+F

p

)-subset with the same

w

min

e. Calculate

f

1

=(F

p

+min(F

p

,n))/2

f. Calculate

f

2

=(F

p

-min(F

p

,n))/2

a. Set candidate PC bits by choosing

f

1

 bits with

weight w

min

 and

f

2

 bits with weight 2*

w

min

b. Determine Information Set

I

 by selecting

K

 most

reliable subchannels (skip candidate PC bits)

c. Determine Frozen Set

F

 as the remaining

subchannels

d. Choose more PC bits from

F

 with weight

w

min

 and

2*

w

min

, combined with PC bits in a., finally obtain PC-

frozen (

PF

) Set

Set values of

PF

 bits by parity check function:

Using cyclic shift on a register with length of a prime

value

oleObject4.bin
a. Calculate weight sequence by
b. Sort Wi in ascending order and save the ordered index sequence Qi

Calculate puncture pattern P
P = [BitRev(M), BitRev(M+1),…,BitRev(N-1)]

a. Calculate Fp by
b. Divide the subchannels (in ascending order of weight) into three subsets (N-M,M-K-Fp,K+Fp)
c. Find wmin as the smallest row-weight within the (K+Fp)-subset
d. Find n as the number of sub-channels in the (K+Fp)-subset with the same wmin
e. Calculate f1=(Fp+min(Fp,n))/2
f. Calculate f2=(Fp-min(Fp,n))/2

a. Set candidate PC bits by choosing f1 bits with weight wmin and f2 bits with weight 2*wmin
b. Determine Information Set I by selecting K most reliable subchannels (skip candidate PC bits)
c. Determine Frozen Set F as the remaining subchannels
d. Choose more PC bits from F with weight wmin and 2*wmin, combined with PC bits in a., finally obtain PC-frozen (PF) Set

Set values of PF bits by parity check function:
Using cyclic shift on a register with length of a prime value

image5.emf
N-M M-K-F

p

K+F

p

Ascending reliability

oleObject5.bin
N-M

M-K-Fp

K+Fp

Ascending reliability

image6.emf
Information Bit

Left cyclic shift upon encoding each bit

PCC Frozen Bit

0

Static Frozen Bit

oleObject6.bin
Information Bit

Left cyclic shift upon encoding each bit

PCC Frozen Bit

0

Static Frozen Bit

image7.emf
Frozen-Bit Informaiton-Bit PC-Frozen bit

oleObject7.bin
Frozen-Bit

Informaiton-Bit

PC-Frozen bit

image8.emf
x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

y

1

y

2

y

3

y

4

y

5

y

6

y

7

y

0

u

0

u

1

u

2

u

3

u

4

u

5

u

6

u

7

F

D

I

Self

-

Parity Check Function

Polar Self-Parity Check Function Setup

Microsoft_Visio___11.vsdx
x0
x1
x2
x3
x4
x5
x6
x7
y1
y2
y3
y4
y5
y6
y7
y0
u0
u1
u2
u3
u4
u5
u6
u7
F
D
I

Self-Parity Check Function
Polar Self-Parity Check Function Setup

image9.emf
u

0

u

1

u

2

u

3

u

4

u

5

u

6

u

7

F

D

I

x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

y

1

y

2

y

3

y

4

y

5

y

6

y

7

y

0

Segment #0

Segment #1

Self

-

Parity Check Function

Chained Polar Self/Cross Parity-Check

Function Setup

c

0

c

1

c

2

c

3

c

4

c

5

c

6

c

7

Microsoft_Visio___22.vsdx
u0
u1
u2
u3
u4
u5
u6
u7
F
D
I
x0
x1
x2
x3
x4
x5
x6
x7
y1
y2
y3
y4
y5
y6
y7
y0
Segment #0
Segment #1

Self-Parity Check Function
Chained Polar Self/Cross Parity-Check Function Setup
c0
c1
c2
c3
c4
c5
c6
c7

image10.emf
Q

Step 1.

Pre-Calculate and Read out length

of N Bits Position Sequence

Step 2.

Mark the (PC-) frozen bits and

information bits set(F,PF,I)

Step 3.

Generating Chained Polar self/

cross parity-check Matrix V for

marking the (PC-) frozen bits and

information bits set(F’,PF’,I’) in L

segments

M,N,K

F,PF,I L

Step 4.

Parallel Decoding on L segments

and decoded information bits

collection

(F’,PF’,I’)

L

LLR

0

,LLR

1

,LLR

2

,…,LLR

K-1

V

a

0

,a

1

,a

2

,…,a

K-1

Parallel by air interface

latency for receiving

data symbols

Microsoft_Visio___33.vsdx
Q
Step 1.
Pre-Calculate and Read out length of N Bits Position Sequence
Step 2.
Mark the (PC-) frozen bits and information bits set(F,PF,I)
Step 3.
Generating Chained Polar self/cross parity-check Matrix V for marking the (PC-) frozen bits and information bits set(F’,PF’,I’) in L segments
M,N,K
F,PF,I
L
Step 4.
Parallel Decoding on L segments and decoded information bits collection
(F’,PF’,I’)L
LLR0,LLR1,LLR2,…,LLRK-1
V
a0,a1,a2,…,aK-1
Parallel by air interface latency for receiving data symbols

image11.emf
Frozen-Bit Informaiton-Bit PC-Frozen bit

Segment-0 Segment-1

oleObject8.bin
Frozen-Bit

Informaiton-Bit

PC-Frozen bit

Segment-0

Segment-1

image12.png
| Segmentation

Divide K message
intom segments
with differentinfo
length K,

PC-based
construction

N/4

&RateMatch

N/4 Kronecker

PC-based

N/4

construction
&RateMatch

N/4 Kronecker

PC-based

N/4

unit

construction
&RateMatch

PC-based

N/4

construction
&RateMatch

N/4 Kronecker /
N/4 Kronecker

Polar encoder of length N

Encoded
bits

image13.emf
Es/No(dB)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

B

L

E

R

10

-3

10

-2

10

-1

10

0

Info. Bits Len =1000,QPSK

Turbo R=1/5(1000/5000)

Turbo R=1/3(1000/3000)

Turbo R=2/5(1000/2500)

Turbo R=1/2(1000/2000)

Turbo R=2/3(1000/1500)

Turbo R=3/4(1000/1334)

Turbo R=5/6(1000/1200)

Turbo R=8/9(1000/1125)

Polar PC-SCL32,R=1/5(1000/5000)

Polar PC-SCL32,R=1/3(1000/3000)

Polar PC-SCL32,R=2/5(1000/2500)

Polar PC-SCL32,R=1/2(1000/2000)

Polar PC-SCL32,R=2/3(1000/1500)

Polar PC-SCL32,R=3/4(1000/1334)

Polar PC-SCL32,R=5/6(1000/1200)

Polar PC-SCL32,R=8/9(1000/1125)

Polar PC-SCL8,R=1/3(1000/3000)

Polar PC-SCL8,R=2/5(1000/2500)

Polar PC-SCL8,R=1/2(1000/2000)

Polar PC-SCL8,R=2/3(1000/1500)

Polar PC-SCL8,R=1/5(1000/5000)

Polar PC-SCL8,R=3/4(1000/1334)

Polar PC-SCL8,R=5/6(1000/1200)

Polar PC-SCL8,R=8/9(1000/1125)

Polar CA-SL32,CRC16,R=1/5(1000/5000)

Polar CA-SL32,CRC16,R=1/3(1000/3000)

Polar CA-SL32,CRC16,R=2/5(1000/2500)

Polar CA-SL32,CRC16,R=1/2(1000/2000)

Polar CA-SL32,CRC16,R=2/3(1000/1500)

Polar CA-SL32,CRC16,R=3/4(1000/1334)

Polar CA-SL32,CRC16,R=5/6(1000/1200)

Polar CA-SL32,CRC16,R=8/9(1000/1125)

image14.emf
Es/No(dB)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

B

L

E

R

10

-3

10

-2

10

-1

10

0

Info. Bits Len =4000,QPSK

Turbo R=1/5(4000/20000)

Turbo R=1/3(4000/12000)

Turbo R=2/5(4000/10000)

Turbo R=1/2(4000/8000)

Turbo R=2/3(4000/6000)

Turbo R=3/4(4000/5334)

Turbo R=5/6(4000/4800)

Turbo R=8/9(4000/4500)

Polar PC-SCL32,R=1/5(4000/20000)

Polar PC-SCL32,R=1/3(4000/12000)

Polar PC-SCL32,R=2/5(4000/10000)

Polar PC-SCL32,R=1/2(4000/8000)

Polar PC-SCL32,R=2/3(4000/6000)

Polar PC-SCL32,R=3/4(4000/5334)

Polar PC-SCL32,R=5/6(4000/4800)

Polar PC-SCL32,R=8/9(4000/4500)

Polar PC-SCL8,R=1/5(4000/20000)

Polar PC-SCL8,R=1/3(4000/12000)

Polar PC-SCL8,R=2/5(4000/10000)

Polar PC-SCL8,R=1/2(4000/8000)

Polar PC-SCL8,R=2/3(4000/6000)

Polar PC-SCL8,R=3/4(4000/5334)

Polar PC-SCL8,R=8/9(4000/4500)

Polar PC-SCL8,R=5/6(4000/4800)

Polar CA-SCL32,CRC16,R=1/5(4000/20000)

Polar CA-SCL32,CRC16,R=1/3(4000/12000)

Polar CA-SCL32,CRC16,R=2/5(4000/10000)

Polar CA-SCL32,CRC16,R=1/2(4000/8000)

Polar CA-SCL32,CRC16,R=2/3(4000/6000)

Polar CA-SCL32,CRC16,R=3/4(4000/5334)

Polar CA-SCL32,CRC16,R=5/6(4000/4800)

Polar CA-SCL32,CRC16,R=8/9(4000/4500)

image15.emf
Es/No

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

B

L

E

R

10

-4

10

-3

10

-2

10

-1

10

0

Code Block Length = 4096,QPSK

Polar PC-SCL32,1 segment,R=8/9

Polar PC-SCL32,1 segment,R=5/6

Polar PC-SCL32,1 segment,R=3/4

Polar PC-SCL32,1 segment,R=2/3

Polar PC-SCL32,1 segment,R=1/2

Polar PC-SCL32,1 segment,R=2/5

Polar PC-SCL32,1 segment,R=1/3

Polar PC-SCL32,1 segment,R=1/5

Polar PC-SCL32,2 segment,R=8/9

Polar PC-SCL32,2 segment,R=5/6

Polar PC-SCL32,2 segment,R=3/4

Polar PC-SCL32,2 segment,R=2/3

Polar PC-SCL32,2 segment,R=1/2

Polar PC-SCL32,2 segment,R=2/5

Polar PC-SCL32,2 segment,R=1/3

Polar PC-SCL32,2 segment,R=1/5

image16.emf
Es/No

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

B

L

E

R

10

-4

10

-3

10

-2

10

-1

10

0

Code Block Length = 8192,QPSK

Polar PC-SCL32, 1 segment,R=8/9

Polar PC-SCL32, 1 segment,R=5/6

Polar PC-SCL32, 1 segment,R=3/4

Polar PC-SCL32, 1 segment,R=2/3

Polar PC-SCL32, 1 segment,R=1/2

Polar PC-SCL32, 1 segment,R=2/5

Polar PC-SCL32, 1 segment,R=1/3

Polar PC-SCL32, 1 segment,R=1/5

Polar PC-SCL32, 2 segment,R=8/9

Polar PC-SCL32, 2 segment,R=5/6

Polar PC-SCL32, 2 segment,R=3/4

Polar PC-SCL32, 2 segment,R=2/3

Polar PC-SCL32, 2 segment,R=1/2

Polar PC-SCL32, 2 segment,R=2/5

Polar PC-SCL32, 2 segment,R=1/3

Polar PC-SCL32, 2 segment,R=1/5

image17.emf
EsN0

-10 -8 -6 -4 -2 0 2 4 6 8

B

L

E

R

10

-3

10

-2

10

-1

10

0

K=1000 list size=32

CR: 1/12, NoSeg

CR: 1/6, NoSeg

CR: 1/5, NoSeg

CR: 1/3, NoSeg

CR: 2/5, NoSeg

CR: 1/2, NoSeg

CR: 2/3, NoSeg

CR: 3/4, NoSeg

CR: 5/6, NoSeg

CR: 8/9, NoSeg

CR: 1/12, Seg16

CR: 1/6, Seg8

CR: 1/5, Seg8

CR: 1/3, Seg4

CR: 2/5, Seg4

CR: 1/2, Seg2

CR: 2/3, Seg2

CR: 3/4, Seg2

CR: 5/6, Seg2

CR: 8/9, Seg2

image18.emf
EsN0

-8 -6 -4 -2 0 2 4 6 8

B

L

E

R

10

-3

10

-2

10

-1

10

0

K=1000 list size=8

CR: 1/12, NoSeg

CR: 1/6, NoSeg

CR: 1/5, NoSeg

CR: 1/3, NoSeg

CR: 2/5, NoSeg

CR: 1/2, NoSeg

CR: 2/3, NoSeg

CR: 3/4, NoSeg

CR: 5/6, NoSeg

CR: 8/9, NoSeg

CR: 1/12, Seg16

CR: 1/6, Seg8

CR: 1/5, Seg8

CR: 1/3, Seg4

CR: 2/5, Seg4

CR: 1/2, Seg2

CR: 2/3, Seg2

CR: 3/4, Seg2

CR: 5/6, Seg2

CR: 8/9, Seg2

image1.emf
Information Set

PC Frozen Set

Frozen Set

Parity-check Function

Average Reliability over Sub-channels From Low To High

PC Frozen Subchannels Scatters over through the block

Parity-Check-Function is always forward

oleObject1.bin
Information Set

PC Frozen Set

Frozen Set

Parity-check Function

Average Reliability over Sub-channels From Low To High

PC Frozen Subchannels Scatters over through the block
Parity-Check-Function is always forward

