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Introduction
The purpose of this document is provide more detailed discussion on channel coding performance, implementation complexity, flexibility, and latency tradeoffs of LDPC, Polar, and Turbo codes for the EMBB use case. In RAN1 #84b is was agreed that [1]
· [bookmark: _GoBack]Selection of 5G new RAT channel coding scheme(s) will consider,
· Performance
· Implementation complexity 
· Latency (Decoding/Encoding)
· Flexibility (e.g., variable code length, code rate, HARQ (as applicable for particular scenario(s)))

In the previous RAN1 #86 considerable study was put forth in understanding the performance across different blocklengths and data rates, essentially demonstrating the flexibility for each of the candidate coding schemes. Additionally, this was jointly incorporated into a computational complexity analysis to provide initial insights between candidates (properly normalized for performance) [6]. 

In the previous RAN1 #86, considerable study was put forth in understanding the implementation complexity of the candidate coding schemes. This was performed in conjunction with analyzing the impact of decoding latency and throughput on said complexity. It was shown that the LDPC decoder had the most efficient implementation in terms of area and throughput [18].

For this contribution, the effect of decoder flexibility, specifically in code length and rate, on area, throughput, and latency will be studied for the three decoding candidates.
This contribution will show the following results:
· That a flexible LDPC decoder implementation can support any QC-LDPC code with less than 15% increase in decoder area compared to an inflexible decoder.
· That increasing the parallelism and throughput of turbo decoders reduces their flexibility in block length.
· That polar list decoders, while flexible, are significantly more complex, even when reduced-complexity decoders are used, and have higher latency than LDPC decoders.

Performance
From the previous RAN1 #85 meeting, performance was comprehensively studied across different blocklengths and code rates for many design examples of each candidate EMBB coding scheme. Although simulations were not completely aligned or cross verified between companies, relatively small performance gaps were observed between the candidate EMBB schemes.
Figure 1 compares the performance of LDPC, polar, and turbo codes at rates 1/5 and 8/9. The LDPC codes were decoded using an adjusted min-sum algorithm with the same memory footprint as offset min-sum and with comparable computational and implementation complexity [16]. A layered decoding schedule was utilized and the number of iterations used varied and is listed in the legend for the figure. The turbo decoder results are from R1-164358 and R1-164186 and used 8 iterations. The polar results are for a list decoder with list size equal to 32 and are from R1-164377. From the figure, it is concluded that 15 and 12 layered decoding iterations are sufficient for the LDPC decoder to match the performance the polar and turbo decoders at rate 1/5 and 8/9, respectively.
It is generally expected that further optimization of code design and tweaking of decoding algorithm parameters would not lead to any dramatic deviation from these initial observations. Thus, the focus here it to understand if there are any significant differentiating factors in terms of the implementation costs.
  

Figure 1. Performance comparison between LDPC, polar, and turbo codes

Implementation Area 
In this section we focus on the decoder implementation area, as that is main contributor to the implementation area when considering channel coding. In principle, there are two main considerations for implementation area, (1) the memory for LLR buffer and decoding algorithm needed to support all blocklengths and rates for the specification coding scheme, and (2) the update logic related to the decoding algorithm. (The read-only memory associated with storage of the code specification is typically negligible.) 
As an example for discussion, it is assumed all candidate EMBB coding schemes share the following properties which will dictate the implementation area.
· Lowest coding rate is 
· Largest code blocklength is N=40,000 (largest information blocksize is K=8000 for )
· Support full rate compatibility and blocklength granularity
Memory
The following memory usage is shared across all Polar, LDPC and Turbo.
· Double buffer channel LLRs for all codes up to N <= 40,000.
· Qc: the number of bits in a channel LLR.
· Qi: the number of bits in an internal LLR.

Flexible Offset Min-Sum LDPC Decoder
We use an offset min-sum LDPC decoder with a layered decoding schedule for complexity analysis. This enables reduction in memory and in the number of required decoding iterations. 
Instead of storing the channel LLRs and the check-to-variable node messages separately, only the sum is stored for each variable node. Each of these sums is Qc bits wide and we need to store 2*N of them for a total channel LLR memory of  bits.
Each check node stores the 1st and 2nd minimum magnitude, each is Qi -1 bits wide, and the index of the minimum magnitude, which is 5 bits for the proposed N <= 40000 design. In addition, each check node stores the signs of all outgoing messages. We provision enough check-node memory to accommodate the lowest rate (1/5) case, where the average check node degree is 5 and there are  check nodes. The total check node memory is .
Finally, the memory width is Zmax LLRs, where Zmax is the maximum lift size.
List Decoders for Polar Codes
To double-buffer channel LLRs, the decoder requires 2NQc bits. In addition, each list element stores  LLRs for a total of LNQi bits of internal LLR memory.
Similarly, the list decoder stores two N-bit estimated codewords and NL internal bit estimates.
While the list decoder also stores L path metrics (of Qm bits each), the size of this memory is negligible compared to the rest and we ignore it in this analysis. Therefore, the total memory required by the list decoder is approximately  bits.
In [7], recalculating LLR values corresponding to the larger stages in the decoder instead of storing them was proposed as method to reduce the decoder memory requirements. The output LLRS for stages , , , and  are not stored, reducing the internal LLR memory to  LLRs per list element.
The total memory for the polar list decoder becomes
 bits. The impact of the LLR recalculation on implementation complexity is discussed in a later section.
Memory width is  LLRs, where P is the level of parallelism and affects latency as will be discussed later.
To maintain clock frequency, pipeline registers are inserted at the output of the stage  recalculation. This adds  LLR registers to the memory for a total of
 bits.
Max*-Log-Map Turbo Decoder
Similar to the other decoders in this section, the turbo decoder double buffers the input channel LLR in a  bit memory.
In terms of internal memory, the turbo decoder stores the forward and backward metrics,  and , but calculates the branch metric, , requiring approximately (ignoring tail bits)  bits of memory, where M is the convolutional code memory. The two sets of extrinsic LLRs exchanged between the component decoders are stored in  bits of memory. Therefore, the total memory required by the turbo decoder is  bits.
Summary
· N = 40000, K = 8000.
· LDPC: Qc = 7, Qi = 5.
· Polar: Qc = 5, Qi = 6, L = 32
· Turbo: Qc = 6, Qm = 9, Qe = 8, M = 3.

	
	LDPC
	Polar
	Turbo

	Channel LLRs
	
	
	

	Output Memory
	
	
	

	Internal
	
	 
	

	Total (N = 40k)
	1.14 Mb
	1.09 Mb 

	1.76 Mb

	Total (N=40k) Normalized to LDPC
	1
	0.96

	1.56



Update Logic
Flexible Offset Min-Sum LDPC Decoder


[bookmark: _Ref463030725][bookmark: _Ref463030690]Figure 2 Flexible LDPC Decoder Architecture
The LDPC decoder is implemented using a flexible, semi-parallel architecture as shown in Figure 2, where the parts that are required to support flexibility are highlighted. The overall logic can be broken down into two main categories.
Variable and Check Nodes Logic
Using a serial check-node and variable-node updates reduces implementation complexity and the critical path length.
The check node processor requires two adders to reconstruct the variable node messages and one absolute value calculator and two comparators to find the first and second min. Another adder is needed to apply the offset.
The variable node processor requires two adders to reconstruct the input messages and another two to calculate the new message.
We implement Zmax combined variable/check node processors for a total computational-logic complexity of 8*Zmax adders and 2*Zmax comparators.
To increase throughput and decrease decoding latency, the number of variable/check node processors can be increased and so can the level of parallelism inside the variable/check node processor.
Permutation Network
To support full (one-bit granularity) code rate and length flexibility, a flexible switch is needed to route and permute LLRs between the memory and node processors. The QC-LDPC Shift Network (QSN) [8] is such a switch that supports any rotation amount and any lift size Z up to Zmax. The number of 2x1 Qc-bits multiplexers it requires is
 multiplexers. The control logic requires a  look-up table. Other flexible, low-complexity switch architectures such as the subset cyclic shifter (SCS) [9] and the Benes network [10] can also be used.
It was shown in [9] that a flexible switch that supports any cyclic shift of any size up to Zmax = 81 occupies 13.3% of the decoder area when N=1944. When N is increased to 40000 and Zmax to 320, the flexible switch is expected to occupy 6% of the decoder area, where memory and node processor area is scaled linearly with N and Zmax, respectively; and the switch area is scaled according to  as observed in [8]. Applying similar scaling and replacing inflexible switches with flexible ones where necessary for other works in literature yields the results summarized in the following table, where it can be observed that the switch is 15.5% or less of the total decoder area. Similar scaled results were observed in [17], where the flexible permutation network is expected to occupy less than 10% of the decoder area.
	
	[13]
	[14]
	[15]
	[9]

	Flexible permutation network
(% of total decoder area)
	15.5%
	12%
	12%
	6%


Furthermore, a single flexible switch can be constructed from multiple smaller flexible switches as shown in [19]. This improves hardware utilization and reduces latency when .
SSC-List Decoder for Polar Codes
A polar code of length N is the concatenation of two polar sub-codes of length N/2. This concatenation process is applied recursively until sub-codes of length 1 are reached. These length-1 sub-codes either carry an information bit, or a frozen bit. Successive-cancellation (SC) decoding calculates the input to each sub-code recursively until length-1 sub-codes are reached. At which point, the single bit is estimated to be 0 if it is frozen, or using the sign of the LLR (threshold detection) if it is an information bit. Recursively decoding every sub-code leads to SC decoders having high latency.
Simplified SC (SSC)-based decoding reduces latency by directly decoding sub-codes when implementation and computational complexity constraints permit. Examples of these sub-decoders are:
· Decoders for rate-0 sub-codes whose output is known a priori to be the all-zero vector.
· Decoders for rate-1 sub-codes whose output is the element-wise hard-decision decoding of the input LLRs.
· Decoders for repetition codes.
· Exhaustive-search maximum-likelihood (ML) decoders, the maximum length and dimension of the sub-codes on which they operate is limited by available computational elements.
List decoding can also benefit from SSC latency reduction techniques. One major difference between SC-List and SSC-List decoding is that, in the latter, directly-decoded sub-codes can generate multiple candidates per list item. Whereas SC-List decoding, because it arrives at single-bit sub-codes, only generates two candidates per list item.
We discuss two SSC-List decoding implementation strategies:
· Polar-A (based on [2])
· Performs approximations that can degrade performance.
· Generates two candidates per rate-1 sub-code.
· Frequency does not scale well with list size.
· Directly decodes (ML) any sub-code of length <= 16 and dimension <= 8.
· Lower latency (in cycles) than Polar-B.
· Higher implementation complexity than Polar-B.
· Polar-B:
· Negligible performance degradation compared to SC-List.
· Generates four candidates per rate-1 sub-code.
· Frequency scales well with list size.
· Does not utilize exhaustive-search ML decoding.
· Higher latency (in cycles) than Polar-A.
· Lower implementation complexity than Polar-B.

F and G blocks:
The decoder implements L*P/2 f and g blocks. This number is limited by the available memory width per list item (P).
Each f block performs  and consists of two 2s-complement-to-sign-magnitude converters, a minimum-value calculator, and one sign-magnitude-to-2s-complement converter. The converters can be implemented using one adder each and the minimum value calculator can be implemented using a comparator.
Each g block performs  or  depending on a combination of estimated bits  and consists of an adder and a subtractor. 
The total complexity of the f and g logic is L*P/2 * (3 + 2) = 5/2LP adders and L*P/2 comparators.
When the LLR recalculation method is used to reduce memory [7], an additional  f and g blocks are required, increasing the total complexity to  adders and  comparators.
Path-metric Sorting
The list of path metrics is sorted using a bitonic sorting network with M=2L (Implementation A) or M=4L (Implementation B) inputs. The basic building block in a sorting network is a 2-input sorter composed of a comparator and two 2x1 multiplexers. A sorting network with M inputs has  2-input sorters, leading to an implementation complexity of  comparators. Qm is the number of bits in the path reliability metric and is greater than Qi. However to simplify the comparison we’ll assume that Qm = Qi
Since Polar-B generates four candidates per list item for each rate-1 sub-code, M = 4L. In Polar-A, M = 2L. However, due to the presence of ML decoders, Polar-A requires L + 3 sorting networks. 
Sub-code Decoders
Rate-1 decoders need to find the minimum LLR magnitude in Polar-A and both the first and second minimum magnitudes (min-1 and min-2, respectively). The required resources to implement these operations are
· In Polar-A, finding the minimum magnitude requires P absolute value calculators (subtractors) and P – 1 comparators per list item.
· In Polar-B, finding min-1 and min-2 requires P absolute value calculators (subtractors) and 2P – 3 comparators per list item [3].
The repetition code decoder requires P adders per list item to accumulate its input that is segmented into blocks of P LLRs.
The ML decoder in Polar-A requires
·  adders.
· 4L Min-1 and Min-2 calculators with 8 inputs that each require  comparators.
LLR Routing Network
In a polar decoder with a list size L, there are L path processors implemented. Each path processor is a modified SSC decoder with parallelism P. The memory is also segmented into L sections, one for each path [11]. 
To reduce memory copy operations when a path is forked into two new ones, memory pointers are used to indicate the shared LLR values that belong to the new paths. While this approach reduces decoder latency, it scatters the LLRs of one path into potentially all L memory segments. As result, each path processor must be able to read LLRs from all memory segments as shown in Figure 3.


Figure 3 Polar list decoder architecture
To support this requirement, the routing network can use an Lx1 multiplexer for each of the L path processors. The input word width of each multiplexer is PQi. Normalizing to 2x1 multiplexers, we get  2x1 PQi-bit multiplexers. For L = 32, 512 2x1 PQi-bit multiplexers are required. A 32x32 Benes network would require  = 288 2x1 PQi-bit multiplexers. However, it was shown in [8] that the control logic for a fully flexible 32x32 Benes occupies slightly larger area than the multiplexers themselves, leading to an area equivalent to 576 2x1 PQi-bit multiplexers. Reduced complexity control logic for Benes networks cannot be used since the routing network must support all possible connections. Therefore, the former, Lx1 multiplexer, approach is used in this analysis with a complexity of 512 2x1 PQi-bit multiplexers.

Sliding window for Turbo (alpha/beta)
Sliding window decoding with W sliding windows implemented in parallel is used to reduce decoding latency. Each sliding window decoder implements a radix-4 SISO decoder to further reduce decoding latency. In a radix-4 SISO decoder, two consecutive trellis-steps are merged and processed simultaneously.
Forward and Backward Metrics
The forward metric, , for an even-indexed trellis stage, , which corresponds to two bits  and  is calculated according to:

Therefore, for each state, the SISO decoder implements 4 adders and three max* calculators to perform the forward metric calculations. In addition, to prevent metric saturation, an offset is subtracted from all metrics when needed, requiring one additional adder per state. There are states per SISO decoder and one SISO decoder per sliding window, yielding a forward metric implementation complexity of  adders and  max* operators.
Similar analysis for the backward metric, , yields the same implementation complexity of   adders and  max* operators.
Branch Metrics
Since the SISO decoder does not store the branch metrics, , but computes them when needed, two branch metric units are needed, one for the forward and one for the backward recursion. Each of the  radix-4 branch metrics is the sum of two radix-2 branch metrics. There are  radix-2 branch metrics in the merged radix-4 trellis stage, each of which is calculated according to

Both  and  , so multiplying by them can only change the sign of the other operand and can be implemented using a subtractor. Therefore, a single radix-2 branch metric calculator requires two subtractors and three adders. The total resources required to implement the 2W radix-4 branch metric units (two for each SISO decoder) in the decoder are  adders.
LLR and Extrinsic Information Units
Since radix-4 SISO decoders are used, two LLR units required: one for each of the two output LLRs  and . The calculation for each unit is

For each  there are  cases where  and  cases where , resulting in two max* tree with  inputs each. A single LLR unit requires one subtractor and  max* operators and the total for the decoder is  adders and  max* operators.
Each of the two extrinsic information calculations per SISO decoder requires two subtractions. The total implementation complexity for the entire decoder is  adders.
Interleaver
If a contention-free, maximally-vectorizable interleaver, such the one from LTE, is utilize, then the two-network architecture of [5] can be used to perform the interleaving operation. In this architecture a Batcher sorting network is used to generate the control signals for a similar-topology switch network. The W-input Batcher sorting network is composed of  2x2 sorters. Similarly, the switch network is composed of  2x2 switches. A 2x2 sorter is composed of a comparator and two 2x1 Qe-bit multiplexers. The 2x2 switch is composed of two 2x1 Qe-bit multiplexers. Therefore the two network comprise  comparators and  2x1 Qe-bit multiplexers. The turbo decoder requires two such interleavers.
When W Radix-X SISO decoders are implemented and the interleaver is assumed to contention free, the number of information bits, K, must be a multiple of . This reduces the flexibility of the turbo decoder compared to the LDPC and polar decoders, but is necessary to improve the decoder throughput. We therefore choose a maximum W value of 8 to provide information block length flexibility with 16-bit granularity.
Using a fully-parallel turbo decoder (FPTD) [12] further restricts the choice of K. It was stated in [12]that the fully-parallel LTE interleaver that was implemented only supports  and . It is expected that other fully-parallel implementations of quadratic polynomial permutation (QPP) interleavers will have similar restrictions. Due to the flexibility requirements of the EMBB coding schemes in NR, further studies are needed to determine if a fully-parallel turbo decoder can be used with these restrictions.
Observation 1: Increasing the parallelism of a turbo decoder limits its block length flexibility.
Observation 2: The fully-parallel turbo decoder supports a limited number of information-block sizes.
Summary
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A max* operation can be implemented using an adder, a comparator, and a 2x1 Qm-bit multiplexer. Replacing the max* with these elements simplifies comparison with the other codes. The total implementation complexity becomes  adders and  comparator

Code Comparison Summary
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Latency and Throughput
Flexible Offset Min-Sum LDPC Decoder
As a result of the heavily pipelined architecture, the variable/check node processor requires 1 cycle to calculate a message (one message per edge). There are  edges in the graph, where is the average variable node degree and the decoder processes Z of them simultaneously. The total decoding latency is cycles per codeword, where I is the number of decoding iterations performed. When C blocks of size Z are decoded in parallel, the latency becomes cycles per codeword. Based on this latency, the decoding throughput is  information bit/s, where  is the operating frequency.
· The decoder is expected to run at 1 GHz.
· In the high rate (8/9) case:
· Average  = 4
· 
· 
· 
· Latency is 1128 cycles per codeword
· Expected throughput is 7.1 Gbps
· Throughput can be increased by processing more columns in parallel. If the number of parallel columns, C, is set to 2, the latency decreases to 564 cycles and the throughput increases to 14.2 Gbps.
SSC-List Decoders for Polar Codes
Using a sorting network, one can sort 2L path metrics in  cycles assuming each stage in the sorting network is performed in a cycle. A less conservative estimate assumes that 4 stages can be performed in a clock cycle, reducing the sorting latency to  cycles. Since sorting occurs only after an information bit is estimated, the per-codeword latency due to sorting in SC-list decoding is

cycles. Therefore, the total latency of an SC-list decoder is
clock cycles.
SSC-list decoding has lower latency, but it is dependent on the location of frozen bits (the code construction parameters) in addition to the code length and rate. The latency of an SSC-list in clock cycles is the sum of the latency of all sub-codes in the pruned code graph:

where  is the length of sub-code i,  is the number of cycles required to calculate the sub-decoder’s input, and  is the latency due to sorting and pipelining in the sub-code decoder.
 depends on the type of sub-code:
· It is 0 if the sub-code will not be directly decoder, i.e. if the decoder will perform an F or a G function.
· It is the latency of a 2L-input sorting network for rate-1 sub-codes in Polar-A.
· It is the latency of a 4L-input sorting network for rate-1 sub-codes in Polar-B.
· It is the latency of a 2L-input sorting network for repetition codes.
· It varies based on sub-code length and rate for ML decoding in Polar-A [2].

For N= 9000, K = 8000, L = 32, P = 256, and a code constructed for the AWGN with BPSK modulation and noise variance , the latency (in clock cycles) is
	
	SC-List
	Polar-A
	Polar-B

	Latency (cycles)
	57512
	1943
	3300



Observation 3: Decoding latency has been a challenging dimension for optimization in literature [2]. Even the latency-optimized solutions of [20] still exhibited a decoding latency of 24us at 1K/2K code block length, significantly worse than currently implemented WiFi 802.11n codes and insufficient for meeting the ACK turnaround requirements needed in LBT spectrum.
Sliding window and parallel for Turbo
Each radix-4 SISO decoder requires K/2 cycles to perform half a decoding iteration, resulting in a latency of KI cycles, where I is the number of full iterations. However, since the decoder implements W sliding window decoders operating in parallel, the latency decreases to  cycles per codeword.
Summary
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Summary of Complexity and Latency for EMBB
The speed of the LDPC decoder can be increased by processing two columns (C = 2) simultaneously. Similarly, the number of SISO decoders in the turbo decoder is set to W = 8 
Due to the serial nature of polar list decoders, increasing the memory width per list element, P, beyond 256 greatly increases implementation complexity, but does not significantly improve speed.
Observation 4: The serial nature of polar decoders limits their latency and throughput.
Given the increased parallelism in the LDPC and turbo decoder, we summarize the implementation complexity and speed in this section.
Implementation Complexity 
A comparator is traditionally implemented using a subtractor. Therefore, we only list the aggregate number of adders, subtractors, and comparators to simplify the comparison.
Complexity for N = 40000, K = 8000
· LDPC: Z = 320, C = 2
· Polar: L = 32, P = 256
· Turbo: W = 8, M = 3

	
	LDPC
	Polar-A
	Polar-B
	Turbo

	Add/sub/comp.
	6400 
	150,080 
	80,544 
	5044 

	Memory (Mb)
	1.14 
	1.09 
	1.09 
	1.76 



Proposal 1: For the same flexibility assumption across all EMBB coding candidates, LDPC should be selected since it can provide the most efficient implementation area.
Peak Rate Throughput and Latency
At peak rate, the largest rate and blocklength are assumed, which leads to N = 9000, K = 8000
· LDPC: Z = 320, I = 12, C = 2
· Polar: L = 32, P = 256
· Turbo: W = 8, M = 3

	
	LDPC
	Polar-A
	Polar-B
	Turbo

	Latency (cycle)
	684 
	1943 
	3300 
	8000 

	Info. T/P (bps)
	 
	 
	 
	 


Observation 5: The LDPC decoder is significantly faster than polar and turbo decoders for the high rate code.
Observation 6: The turbo decoder always operates on a base code of rate 1/3 and is slower than the LDPC decoder at high code rates.
Speed for N = 40000, K = 8000
· LDPC: Z = 320, I = 15, C = 2
· Polar: L = 32, P = 256
· Turbo: W = 8, M = 3

	
	LDPC
	Polar-A
	Polar-B
	Turbo

	Latency (cycle)
	3750 
	17199 
	30172 
	8000 

	Info. T/P (bps)
	 
	0.47
	0.27 
	 



Observation 7: Due to the SSC algorithm, the latency of polar list decoders is very sensitive to code rate.
Observation 8: The LDPC decoder is twice as fast as the turbo decoder for the low rate-code.
 Throughput and Latency at Smaller Block Sizes

[bookmark: _Ref463032472]Figure 4 Throughput of LDPC and turbo decoders at different code rates for information block length K = 1000
Figure 4 compares the throughput of the LDPC and turbo decoder when the information block length K is fixed at 1000 and the rate is increased from 1/5 to 8/9. It can be observed that the LDPC decoder is 1 to 5.5 times as fast as the turbo even for the small EMBB block size. The lift size for the LDPC code is Z = 40 and eight columns are decoded in parallel utilizing the flexible switch described earlier.
Proposal 2: For the same flexibility assumption across all EMBB coding candidates, LDPC should be selected since it can provide the most favorable decoding latency and throughput scaling for a given area.  
Based on error-correction performance, the memory and logic implementation complexity, and decoding speed, we come to the following conclusion.
Proposal 3: Overall LDPC should be selected for EMBB data channel since it can provide additional performance and implementation advantages combined with code flexibility.
Energy Efficiency
The computational complexity per information was presented previously in terms of computations per information bit [6]. There it was reported that generally LDPC and Polar showed advantages over the rate-compatible punctured Turbo codes in LTE. In a sense, the benefits came from the fact that at higher rates the Turbo encoder would puncture bits and the decoder would spend the computation to recover these, while in the LDPC and Polar cases the codes were natively operating at the higher rate and thus more efficient in the computations among actual transmitted bits. One important benefit for LDPC is that early termination leads to energy savings since the 1st transmission is operating at a much higher TPUT and computational efficiency, while Turbo codes will decode at rate 1/3 for every transmission.
Observation 9: For IR HARQ, LDPC codes with extension are more energy efficient than rate compatible punctured Turbo codes which always operate at lowest rate.
It is important to note that such metrics, although insightful when comparing decoding algorithms, may not accurately reflect the overall energy efficiency. This is because computation is not the only contributor to power consumption. Memory elements generally consume power just to maintain state, and then memory accesses may further consume power; these are two aspects which are not captured in the analysis of [6]. Moreover, larger areas may have additional concerns with clock distribution, leakage currents, and other aspects which are not considered.
Another issue with energy estimates in the literature is they often assume a given decoder architecture that might not be applicable. For example, the work in [21] assumes a fully parallel decoder implementation, where all variable and check nodes are implemented, which is not the case for most practical decoders such 802.11ac decoders.
Generally, however, some aspects which show benefits in [6], as well as the results here regarding implementation area, can translate into energy efficient benefits. So it can be a reasonable guiding principle for the best coding candidate to be competitive or better in all metrics.
Conclusions
Observation 1: Increasing the parallelism of a turbo decoder limits its block length flexibility.
Observation 2: The fully-parallel turbo decoder supports a limited number of information-block sizes.
Observation 3: Decoding latency has been a challenging dimension for optimization in literature [2]. Even the latency-optimized solutions of [20] still exhibited a decoding latency of 24us at 1K/2K code block length, significantly worse than currently implemented WiFi 802.11n codes and insufficient for meeting the ACK turnaround requirements needed in LBT spectrum.
Observation 4: The serial nature of polar decoders limits their latency and throughput.
Observation 5: The LDPC decoder is significantly faster than polar and turbo decoders for the high rate code.
Observation 6: The turbo decoder always operates on a base code of rate 1/3 and is slower than the LDPC decoder at high code rates.
Observation 7: Due to the SSC algorithm, the latency of polar list decoders is very sensitive to code rate.
Observation 8: The LDPC decoder is twice as fast as the turbo decoder for the low rate-code.
Observation 9: For IR HARQ, LDPC codes with extension are more energy efficient than rate compatible punctured Turbo codes which always operate at lowest rate. 

Proposal 1: For the same flexibility assumption across all EMBB coding candidates, LDPC should be selected since it can provide the most efficient implementation area. 
Proposal 2: For the same flexibility assumption across all EMBB coding candidates, LDPC should be selected since it can provide the most favorable decoding latency and throughput scaling for a given area. 
Proposal 3: Overall LDPC should be selected for EMBB data channel since it can provide additional performance and implementation advantages combined with code flexibility.
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