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In RAN1#85, a baseline rate-matching method of Polar codes, the quasi-uniform puncturing (QUP) method, was discussed [1] along with the performance in typical NR scenarios eMBB, mMTC and uRLLC. 
In this contribution we focus on a simplified polar code construction and rate-matching scheme. 
Polar codes design for NR  
As a performance baseline rate-matching scheme, the QUP method was discussed in [1]. It constructs a polar code by calculating the reliability of each synthesized sub-channel as reliable metric using Density Evolution based on a Gaussian approximation (DE/GA). The sub-channels with high reliability are chosen to transmit the information bits, while the bits for the unreliable sub-channels are set to zero, called frozen bits; this set of unreliable positions is called the frozen-set (F). Given a combination of code rate (R) and code length (M), both encoder and decoder have to compute this frozen-set (F) before encoding or decoding. The uniqueness of (F) between encoder and decoder should be secured. 
Next we present a rate-matching scheme which computes the frozen set, i.e. the positions of the frozen bits, in a simple way for any coding rate.  
Polar Code Rate Matching Method 
Due to the fact that a polar code with a mother code length N that is a power of two can be regarded as a nested combination of two polar codes of length N/2, we construct a ordered sequence of bit positions (index sequence) such that this ordered sequence for the polar codes of length N/2 is a subset of the ordered sequence for the polar codes of length N. Such a sequence  for the polar code of maximum code length Nmax , where Nmax is a power of two, then covers any combination of code rate and code length (of power of two) smaller than Nmax in a nested way. Rate matching can then be performed at low complexity and with very fine granularity. The generation of the ordered index sequence  is an offline operation. 
Consider an example for Nmax=16. Both encoder and decoder store the sequence  . The encoding of a (M=12, K=6, R=1/2) polar code is done as follows:    
1) Consider the mother code length , which is a power of two.
2) As there are 4 bits (4=N-M) to be punctured to obtain the code length M, compute the length-4 puncturing pattern P by bit-reversing the sequence of [12(1100), 13(1101), 14(1110), 15(1111)] (= [M, …N-3, N-2, N-1] ) as  = [BitRev( M ), …, BitRev(N-3 .
3) rate a frozen-set F by selecting the first 6 entries (6=M – K ) from  whose values are smaller than N and do not exist in P: .
4) Combine F and P to obtain the set of the 10 (10=N-K) frozen positions:    
5) Initialize the input binary vector  by setting to zero onto the positions defined by (frozen bits) and putting the 6-bit (6=K) information block  onto the remaining entries  (information bits).
6) Encode  by a the polar code matrix of size N=16 to obtain the coded vector .
7) Puncture 4 (4=N-M) bits on the positions indicated by   from  to form a desired code-word .
In a similar way, we can generate a set of rate matching parameters for the case (M=6, K=3, R=1/2) by using the same : 
N = 8, P=[3(011) , 7(111)], F = [0, 1, 2], 
A block diagram for the procedure to generate the sets U and P for freezing and puncturing is given in Figure 1.  


Fig. 1: Procedure to generate P and U.
Figure 2 illustrates the encoding steps remaining after P and U are generated.  


Fig. 2: Polar encoder.
At the decoder side, given M and K, steps 1 to 4 described above for the encoder are used to generate the frozen positions U and punctured positions P. The decoder performs operations corresponding to the inverse of those shown in Figure 2. 
Generation of 
The sequence of bit positions   may be determined in the following way. First, compute the weight sequence : 

Assume  with ,, 
then,
                	                   
where n = log2(N).  
Following the example above with Nmax= 16, n=log2(16) = 4 and for i=3 (), W3 can be calculated as:
W3 = 1*2^(0*(1/4)) + 1*2^(1*(1/4)) + 0*2^(2*(1/4)) + 0*2^(3*(1/4))  = 2.1892
The full weight vector is =[0 1 1.1892 2.1892 1.4142 2.4142 2.6034 3.6034 1.6818 2.6818 2.8710 3.8710 3.0960 4.0960 4.2852 5.2852]. 
Once  is obtained, the next step is to sort it such that .  and save the corresponding indix sequence as  .
Note that  is either loaded directly from the memory or alternatively initialized at the beginning such there is no need to compute it for every encoding & decoding rate-matching operation. 
3. Simulation results
We compare the performance between Polar codes with a baseline reference QUP method and the proposed rate-matching method; the Turbo code performance is provided for reference. Note that the Polar codes use the same CA-SCL32 decoding algorithm with 24-bit CRC.  The Turbo is without CRC, and the decoder is the max-log-map, scaling factor of 0.75 and 8 iterations.
· Simulation results for information block length = {1K}, list size = 32
[image: ]
Fig. 3 BLER performance for info. block length = 1K with various code rates
· Simulation results for information block length = {4K}, list size = 32
[image: ]
Fig. 4 BLER performance for info. block length = 4K with various code rates 
The simulations show that there is almost no performance degradation between this rate-matching scheme and QUP scheme.
Discussion  
The rate-matching scheme presented in the previous section has the following characteristics: 
· the sequence Q is pre-computed (offline) and stored in memory;
· the puncturing pattern P is determined according to bit-reversal order, and has very low computational complexity (no look-up-table operation);  
· the frozen set F is determined as subsequence of Q, and has very low computational complexity (no look-up-table operation). 
Hence, this rate-matching method requires very small memory and very low computational complexity.
It is noted that another major advantage of this method is that it can be easily extended to support larger code lengths and it can be further optimized, making it a good candidate from the forward compatibility viewpoint. Specifically, to support larger code lengths, it requires only the replacement of Q with a longer sequence. Conversely for other schemes, the changes will be much more significant. Also, the code can be further improved with minimal changes.
Finally, this rate matching is very flexible in the sense that any code rate can be generate following the same steps described above.
Conclusion
 In this contribution, we propose a simple and powerful rate-matching scheme for Polar Codes. The scheme requires only small memory and simple computations, and it allows for fine granularity. The error-rate performance is almost the same as the one achieved by the baseline QUP method. Further, the rate-matching scheme allows for simple extension to other code rates and code lengths if required in the future.
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