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1 Introduction
In RAN #71, a new SI, on New Radio Access Technology (NR) was approved [1]. One of the main deployment scenarios for the NR is enhanced mobile broadband (eMBB). For some eMBB use cases TR38.913[2] requires upto 20Gb/s on the down-link and 10Gb/s for the up-link. Key enablers for this unprecedented high capacity are high order constellations and efficient and powerful error correcting codes. 
In this contribution, we discuss the study of high performing non-uniform QAM (NU-QAM) constellations [3] which provide better performance than the traditional uniform QAM constellations in both flat and selective fading channels. We show results of link layer simulations of NU-QAM with Turbo codes.
2 Non-uniform QAM Constellations
2.1 Overview
Figure 1 shows the well-known 64QAM constellation. The points in this constellation are equally spaced along both axes. This constellation is termed uniform 64QAM for this reason. Such a uniform constellation with Gray-coded labels is a near-optimum shape for uncoded communications [4]. The square shape of uniform constellations also minimizes de-mapping complexity at the receiver. The constellation can be de-mapped using two simple pulse amplitude modulation (PAM) de-mappers. 
Better performing constellation shapes can be used when coding is applied. Such constellations can be designed for coded communications by optimizing the constellation shape while taking into account the effect of coding, interleaving and label assignment together [3]. This optimization typically produces constellations with a non-uniform distribution of the constellation points in the I-Q plane as illustrated in Figure 2 for the case of non-uniform 64QAM (NU-64QAM). Whilst the square constellation of Fig 2(a) performs slightly worse than the constellation of Fig 2(b), the de-mapper for the 1D optimized constellation, Fig 2(a), is less complex than the de-mapper for the 2D optimized constellation of Fig 2(b).
[image: image1.jpg]



Figure 1: Uniform 64QAM constellation
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Figure 2: Non-Uniform 64QAM constellation optimization (a) 1D and (b) 2D
2.2 Optimization of NU-QAM constellations
In designing the shapes of non-uniform constellations, the effect of the coding, interleaving and label assignment have to be taken account of together. These blocks together comprise the so-called bit interleaved coded modulation (BICM) as illustrated in Figure 3. The constellation shape is optimized based on the operating range of the coding applied. The constellation shapes used for the simulations here were optimized for SNR = 12dB (Figure 4(a)) and 18.3dB (Figure 4(b)). The gain in performance over uniform constellations of the same order is known as a shaping gain. The shaping gains are, in general expected to increase with increasing order of NU constellations. 
Observation 1: The shaping gain in general increases with the order of the NU constellation.
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Figure 3: Optimize constellation shape across all BICM blocks
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Figure 4: NU-64QAM constellations optimized for (a) 12dB, (b) 18.3dB
3       NU-64QAM Performance Evaluation
Performance evaluation was carried out using the NU-64QAM constellations of Figure 4 optimized for SNR = 12dB (Figure 4(a)), and 18.3dB (Figure 4(b)). Simulation conditions are summarized in Table 1.
	Parameter
	Value

	Physical channel
	PDSCH

	Control channel region
	2 OFDM symbols

	System bandwidth
	5 MHz

	PRBs allocated to PDSCH
	25PRB

	Transport block size
	9958 (CR=0.504); 15833 (CR = 0.800)

	Modulation 
	Uniform 64QAM and NU-64QAM optimized for 12dB, 15.2dB and 18.3dB operating points

	FEC
	LTE Turbo code and rate matching

	Channel
	ETU / AWGN

	Channel speed
	static

	Channel estimation
	realistic

	Transmission mode
	TM2

	Number of antennas
	AWGN simulations: 1Tx, 1Rx

ETU simulations: 2Tx, 2Rx


Table 1: Link layer simulation conditions
Figure 5 compares the performance in AWGN of Turbo-coded uniform 64QAM and NU-64QAM optimized for 12dB and 18.3dB. The gains observed are comparable to those from other studies [3]. Figure 6 shows the performance in AWGN of Turbo-coded uniform 64QAM and NU-64QAM optimized for 12dB, 15.2dB and 18.3dB measured around SNR of 12dB. The 18.3dB NU-64QAM suffers a negative shaping gain whilst the 15.2dB NU-64QAM shows a lower (but still positive) shaping gain than the 12dB NU-64QAM.
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Figure 5:  Performance of NU-64QAM in AWGN.
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Figure 6: Performance of NU-64QAM constellations over SNR range.
Observation 2: There is significant shaping gain (> 0.5dB) for each NU-64QAM around the operating point for which its shape was optimized. (Figure 5)
Observation 3: Each NU-64QAM shape provides positive shaping gain over a small range of SNRs around the SNR at which it was optimized. (Figure 6)
Figure 7 compares the performance in the ETU channel of Turbo-coded uniform 64QAM and the 12dB and 18.3dB optimized NU-64QAM with 2 TX and RX antennas. 
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Figure 7: Performance of Turbo-coded NU-64QAM in ETU channel.
Observation 4: NU-64QAM maintains a positive shaping gain even in fading channels.
4 Conclusions
In this contribution, we proposed the study of NU-QAM constellations for the NR while observing as follows:
Observation 1: Shaping gain in general increases with the order of the NU constellation.
Observation 2: There is significant shaping gain (> 0.5dB) for each NU-64QAM around the operating point for which the NU-64QAM shape was optimized.
Observation 3: Each NU-QAM shape can provide positive shaping gain over a small range of SNRs around the SNR for which it was optimized. 
Observation 4: NU-64QAM maintains a positive shaping gain even in fading channels.
From these observations, we would like to propose as follows:
Proposal 1: RAN1 should consider the use of NU-QAM constellations in the NR
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