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Text Proposal
7.1
Coordinate system
7.1.1
Definition

A coordinate system is defined by the x, y, z axes, the spherical angles and the spherical unit vectors as shown in Figure 7.1.1. Figure 7.1.1 defines the zenith angle 
[image: image1.wmf]q

 and the azimuth angle
[image: image2.wmf]f

 in a Cartesian coordinate system. Note that 
[image: image3.wmf]0
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points to the zenith and 
[image: image4.wmf]0
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points to the horizon. The field component in the direction of 
[image: image5.wmf]q

ˆ

 is given by 
[image: image6.wmf]q
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and the field component in the direction of 
[image: image7.wmf]f
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 is given by 
[image: image8.wmf]f
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Figure 7.1.1: Definition of spherical angles and spherical unit vectors in a Cartesian coordinate system, where
[image: image11.wmf]n

ˆ

is the given direction, 
[image: image12.wmf]q

ˆ

 and 
[image: image13.wmf]f

ˆ

are the spherical basis vectors

7.1.2
Local and global coordinate systems

A Global Coordinate System (GCS) is defined for a system comprising multiple BSs and UTs. An array antenna for a BS or a UT can be defined in a Local Coordinate System (LCS). An LCS is used as a reference to define the vector far-field that is pattern and polarization, of each antenna element in an array. It is assumed that the far-field is known in the LCS by formulae. The placement of an array within the GCS is defined by the translation between the GCS and a LCS. The orientation of the array with respect to the GCS is defined in general by a sequence of rotations (described in clause 7.1.3). Since this orientation is in general different from the GCS orientation, it is necessary to map the vector fields of the array elements from the LCS to the GCS. This mapping depends only on the orientation of the array and is given by the equations in clause 7.1.3. 
Note that any arbitrary mechanical orientation of the array can be achieved by rotating the LCS with respect to the GCS. 

7.1.3
Transformation from a LCS to a GCS

A GCS with coordinates (x, y, z, 
[image: image14.wmf]q

, 
[image: image15.wmf]f

) and unit vectors (
[image: image16.wmf]q

ˆ

, 
[image: image17.wmf]f

ˆ

) and an LCS with "primed" coordinates (x’, y’, z’, 
[image: image18.wmf]'

q

, 
[image: image19.wmf]'

f

) and "primed" unit vectors (
[image: image20.wmf]'

ˆ

q

, 
[image: image21.wmf]'

ˆ

f

) are defined with a common origins in Figures 7.1.3-1 and 7.1.3-2. Figure 7.1.3-1 illustrates the sequence of rotations that relate the GCS (gray) and the LCS (blue). Figure 7.1.3-2 shows the coordinate direction and unit vectors of the GCS (gray) and the LCS (blue). Note that the vector fields of the array antenna elements are defined in the LCS. In Figure 7.1.3-1 we consider an arbitrary 3D-rotation of the LCS with respect to the GCS given by the angles (, (, (. The set of angles (, (, ( can also be termed as the orientation of the array antenna with respect to the GCS. 
Note that the transformation from a LCS to a GCS depends only on the angles (, (, (. The angle ( is called the bearing angle, ( is called the downtilt angle and ( is called the slant angle.
	[image: image22.png]
	[image: image23.png]

	Figure 7.1.3-1: Orienting the LCS (blue) with respect to the GCS (gray) by a sequence of 3 rotations: (, (, (.
	Figure 7.1.3-2: Definition of spherical coordinates and unit vectors in both the GCS and LCS.


Let 
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denote an antenna element pattern in the LCS and 
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denote the same antenna element pattern in the GCS. Then the two are related simply by 
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(7.1-1)
with 
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given by (7.1-7) and (7.1-8).

Let us denote the polarized field components in the LCS by 
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and in the GCS by 
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. Then they are related by equation (7.1-11). 

Any arbitrary 3-D rotation can be specified by at most 3 elemental rotations, and following the framework of Figure 7.1.3-1, a series of rotations about the z, 
[image: image33.wmf]y

&

and 
[image: image34.wmf]x
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axes are assumed here, in that order. The dotted and double-dotted marks indicate that the rotations are intrinsic, which means that they are the result of one (() or two ((() intermediate rotations. In other words, the 
[image: image35.wmf]y
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 axis is the original y axis after the first rotation about z, and the 
[image: image36.wmf]x
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 axis is the original x axis after the first rotation about z and the second rotation about
[image: image37.wmf]y
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. A first rotation of ( about z sets the antenna bearing angle (i.e. the sector pointing direction for a BS antenna element). The second rotation of ( about 
[image: image38.wmf]y

&

 sets the antenna downtilt angle. Finally, the third rotation of ( about 
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&

&

 sets the antenna slant angle. The orientation of the x, y and z axes after all three rotations can be denoted as 
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, 
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 and 
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. These triple-dotted axes represents the final orientation of the LCS, and for notational purposes denoted as the x’, y’ and z’ axes (local or "primed" coordinate system.

In order to establish the equations for transformation of the coordinate system and the polarized antenna field patterns between the GCS and the LCS, it is necessary to determine the composite rotation matrix that describes the transformation of point (x, y, z) in the GCS into point (x’, y’, z’) in the LCS. This rotation matrix is computed as the product of three elemental rotation matrices. The matrix to describe rotations about the z,
[image: image43.wmf]y
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and 
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 axes by the angles (, ( and ( respectively and in that order is defined as
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(7.1-2)
The reverse transformation is given by the inverse of R, which is also equal to the transpose of R since it is orthogonal.
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(7.1-3)
The simplified forward and reverse composite rotation matrices are given by
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(7.1-4)
and
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(7.1-5)
These transformations can be used to derive the angular and polarization relationships between the two coordinate systems. 

In order to establish the angular relationships, consider a point (x, y, z) on the unit sphere defined by the spherical coordinates ((=1, (, (), where ( is the unit radius, ( is the zenith angle measured from the +z-axis, and ( is the azimuth angle measured from the +x-axis in the x-y plane. The Cartesian representation of that point is given by
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(7.1-6)
The zenith angle is computed as 
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 are the Cartesian unit vectors. If this point represents a location in the GCS defined by ( and (, the corresponding position in the LCS is given by 
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, from which local angles (’ and (’ can be computed. The results are given in equations (7.1-7) and (7.1-8).
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(7.1-7)
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(7.1-8)
These formulae relate the spherical angles ((, () of the GCS to the spherical angles ((’, (’) of the LCS given the rotation operation defined by the angles ((, (, ().
Let us denote the polarized field components
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 in the LCS. These are related by
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(7.1-9)
In this equation, 
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 and 
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 represent the spherical unit vectors of the GCS, and 
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are the representations in the LCS. The forward rotation matrix R transforms the LCS unit vectors into the GCS frame of reference. These pairs of unit vectors are orthogonal and can be represented as shown in Figure 7.1.3-3.

[image: image67.png]
Figure 7.1.3-3: Rotation of the spherical basis vectors by an angle ( due to the orientation of the LCS with respect to the GCS

Assuming an angular displacement of ( between the two pairs of unit vectors, the rotation matrix of equation AAH can be further simplified as:
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(7.1-10)
and equation (7.1-9) can be written as:
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(7.1-11)
The angle ( can be computed in numerous ways from equation (7.1-10), with one such way approach being 
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(7.1-12)
The dot products are readily computed using the Cartesian representation of the spherical unit vectors.  
The general expressions for these unit vectors are given by
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and
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The angle ( can be expressed as a function of mechanical orientation ((, (, () and spherical position ((, (), and is given by
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It can be shown that
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can be expressed as:
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(7.1-16)
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7.1.4
Transformation from an LCS to a GCS for downtilt angle only

In this clause equations are provided for the transformation from LCS to GCS assuming that the orientation of the LCS (with respect to the GCS) is such that the bearing angle (=0, the downtilt angle ( is non-zero and the slant angle (=0. In other words the y’-axis of the LCS is parallel to the y-axis of the GCS. Considering a BS antenna element the x-axis of the GCS is aligned with the pointing direction of the sector. Mechanical downtilt is modelled as a rotation of the LCS around the y-axis. For zero mechanical downtilt the LCS coincides with the GCS. 

This transformation relates the spherical angles (
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) in the global coordinate system to spherical angles (
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) in the local (antenna-fixed) coordinate system and is defined as follows:
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where 
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 is the mechanical tilt angle around the y-axis as defined in Figure 7.1.4. Note that the equations (7.1-7), (7.1-8) reduce to equations (7.1-18), (7.1-19) if both ( and ( are zero.
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with 
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 and 
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given by (7.1-18) and (7.1-19).
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Figure 7.1.4: Definition of angles and unit vectors when 
the LCS has been rotated an angle 
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 around the y-axis of the GCS
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Note that the equation (7.1-15) is reduced to equation (7.1-23) if both ( and ( are zero.
As an example, in the horizontal cut, i.e., for 
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