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1 Introduction

The 5G Study Item regarding the “Study on New Radio Access Technology” was approved at the 3GPP TSG RAN#71 meeting. It has the objective to be able to operate from sub 1 GHz to 100 GHz in a large variety of deployment scenarios in a single technical framework [1].  Filtering is expected to be an integral part of New Radio waveforms. For waveforms above 6 GHz, single carrier modulation will require pulse shaping filters. In RAN1#85, such RRC filters were proposed for Nyquist filtering in single carrier modulation [2]. Also time and/or frequency domain filtering has been proposed on a sub-band level to multiplex different numerologies inside one carrier as it can increase the isolation between the sub-bands [3, 4]. 
 RRC filters are often used in communications systems to communicate data with optimal SNR.  Generalized Root Raised Cosine (GRRC) filters are motivated by an understanding that the second derivative of the raised cosine function is discontinuous in the frequency domain and that the first derivative of the square root raised cosine is discontinuous in the frequency domain.  This results in well-known poor adjacent channel performance and the need for subsequent filtering down the processing chain. This paper demonstrates that it is possible to jointly improve time domain and frequency domain performance of the RRC filter while maintaining a low PAPR.
2 Generalized Raised Cosine
We generalize the definition of raised-cosine filters starting with additional smoothness conditions in frequency space. Smoothness in frequency space translates into better decay behavior in time.
2.1 Frequency Domain
Let T be the symbol period. The well-known frequency behavior H(f) of the raised-cosine filter is defined by:
(1) 
The degree of smoothness of H(f) has an impact on the behavior of h(t). Smoothness of H(f) depends entirely on the behavior of H(f) at the critical points  . In the vicinity of any other frequency the function H(f) is analytical in f. 
Derivatives of even order starting with the second derivative are not continuous everywhere. Given the structure of H(f), the values of a potentially continuous derivatives of H(f) must vanish at  .
The odd-symmetry of H(f) in the vicinity of  resulting from the expression
(2) 
can be maintained by using the following more general model:
(3)  for 
Also, . 
The choice n=1 in conjunction with   recovers the raised cosine filter.
For the general case the following conditions must be satisfied where 2m is the order of the highest even derivative of interest:



The first equation translates into  
(4) 
For  we have  while  results in . This is just one condition only:
(5) 
As in the case of raised-cosine filters, all odd derivatives of H vanish at frequencies f with. The two conditions for each even derivative 2k are redundant and generate the following equation:
(6) 
The complete system of conditions can be expressed in matrix notation.
(7) 
This linear system has a unique solution for any n.
The matrix  for any n is a square Vandermonde matrix and both the determinant and the inverse have closed form solutions. This means that the solution vector also has a closed-form solution.
Example 1: n=1:
The matrix in (7) reduces to the identical 1 scalar and the unique solution is . The raised-cosine filter is recovered again. It is well-known that the factorization
(8) =
is one of the most useful features of the raised-cosine filter as it allows the construction of the root raised-cosine matched filter.
Example 2: n=2:
This is the first nontrivial situation. Solving the linear equations (7) result in  and . 
(9) 
Figure 1 demonstrates that the generalized raised cosine function in frequency space has a second continuous derivate while the original raised cosine function has a discontinuous second derivative.
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Fig. 1: Frequency behavior of RC (n=1) vs. generalized RC (n=2) for the first two derivatives.

Example 3: n=3:
Solving the linear equations (7) lead to , , .
(10) 
The raised cosine functions for n=1, 2, 3 can be regarded as the first members of an infinite family of generalized raised cosine functions and it is a natural idea to employ linear combinations of those functions for their ISI and OOB and PAPR behavior.  To guarantee the desired H(f) behavior only linear combinations with non-negative coefficients sum up to unity are considered.
(1) 
In this way, the GRRC filter can be parameterized and optimized for ISI. The last equation is required as H(0)=1.  Also, we choose positive  to guarantee the non-negativity of H(f). Based on such a model for an individual choice of D/2 and fixed choice of beta an optimal (minimize ISI!) set of parameters  can be determined. Those sets of  will vary with beta.  We choose in this paper to fix the  parameters for each  and let  vary freely.  

2.2 Time Domain
The expression for the root GRC Filter arises from numerically evaluating the inverse fourier transform of .  
(2) 

3 Performance Metrics
The performance of the filters will be evaluated against the following criteria.  The computational complexity must be limited at both the transmitter and receiver, another way of saying, the number of taps must be limited.  Out of band emissions in the factored form must be measured at the transmitter and out of band rejection must be measured at the receiver.  These are not necessarily the same numbers in the generalized case.  Following that, the error in the zero crossings of the composite transmit/receive filter must be measured.  
The filter is truncated:
(3) 
where D is the filter delay.
The first objective function is the OOB emissions/rejection. It can be measured as follows:
(4) 
If we call  the truncated transmit filter and  the truncated receive filter, the composite transmit/receive response, , the composite filter response, can be expressed as the convolution of the transmit and receive filters.
(5) 
The second objective function is the intersymbol interference (ISI) introduced by the composite filter.  It can be expressed as follows:
(6) 
Where T is the symbol period.  The results for a given filter are presented as a curve of ISI vs. OOB for a given D with a suite of curves for various D’s.
Figure 2 displays the ISI and OOB behavior for the original raised cosine filter. D varies from 1 to 16 and beta covers the typical range of 0.2 to 0.3. All ISI and OOB values are displayed in dB.
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Fig. 2: ISI and OOB for raised cosine.
Figure 3 shows the generalized raised cosine for n=2. The ISI landscape is smoother for n=2 and the ISI gains are significant for most situations as long as D/2>7. 
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Fig. 3: ISI and OOB for the generalized raised cosine with n=2.
Figure 4 compares ISI and OOB values for the case n=3. The ISI landscape for n=3 is even smoother than the plot for n=2 and the ISI gains are significant for most situations as long as D/2>7. 
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Fig. 4: ISI and OOB and comparisons against n=1 for the generalized raised cosine with n=3.
Figure 5 demonstrates that optimal sets of  for the case m=3 further reduce the ISI values of Figures 3 and 4. 
For linear combinations of smaller numbers of generalized raised cosine functions exhaustive search is applied. For example, for linear combinations of three components this is technically done by listing all discrete  such that each parameter is chosen as . Only combinations that satisfy  are valid. For larger numbers of components optimization routines must be deployed.
The question arises whether a combination of  can be found that performs well for all D for a given beta. As Figure 6 demonstrates, such combinations do exist.
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Fig. 5: ISI and OOB behavior of raised cosine (n=1), generalizations (n=2, n=3), and special linear combination (0.05, 0.65, 0.3) along D/2 for beta=0.25.

Time Domain Peaking Characteristics:
	Waveform
	99% CDF PAR
	99.9% CDF PAR

	RRC, QPSK
	3.22dB
	3.79dB

	GRRC, QPSK
	3.31dB
	4.01dB



In the case of GRRC special linear combination (0.05, 0.65, 0.3)  and RRC for beta = 0.25, the PAR increased by 0.09 dB for the 99% CDF PAR level and for the 99.9%, it increased by .22dB.
4 Observations and Proposals
For the particular example of (0.05,0.65,0.3) and a delay of 8 symbols, we can see that the ISI is improved by around 12dB, OOB by around 18dB at the expense of around 0.25 dB in baseline PAPR.  It is our expectation that PAPR will be brought inline with RRC PAPR or better with peak limiting in the loop.  OOB emissions will not be affected by peak limiting.  
It is too early in the standardization process for the exact coefficients to be determined because there are many unknowns at this point in the above 40GHz regime.  This filter affords much potential for relaxing computational constraints due its short filter impulse responses while optimizing ISI, OOB and PAPR.
Proposal:  Consider the GRRC filter for evaluation in >40GHz NR waveforms.
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