	
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]3GPP TSG RAN WG1 #86	R1-167889
Gothenburg, Sweden, 22th – 26th Aug. 2016
[bookmark: Source]Agenda item:	8.1.4.1
Source: 	Samsung
Title: 	Design of Flexible LDPC Codes
[bookmark: DocumentFor]Document for:	Discussion and Decision
Introduction
In the RAN1 #85 meeting, it was agreed that companies providing evaluations or proposals for LDPC codes are encouraged to show how; 1) Multiple code rates and multiple code sizes would be supported, 2) Suitable granularity of information block size and code rate would be supported, 3) To support HARQ with/without IR [1].
In [2], [3], Samsung proposed a quasi-cyclic (QC) LDPC code obtained by concatenating a small QC LDPC and many single parity-check codes. Furthermore, Samsung conduct the simulation for evaluating the performance of the proposed QC LDPC code in [4].
In this contribution, we present the parity-check matrix of the proposed code and introduce a detailed lifting, shortening and puncturing method.
Flexible LDPC Codes Based on Lifting and Shortening/Puncturing
1
2
Quasi-cyclic LDPC codes
Let be the matrix given by

where are exponent indices of permutation matrices, and are the numbers of column and row blocks, respectively. is just the circulant permutation matrix which shifts the identity matrix to the right by times for any integer , . For simple notation, we denote the zero matrix by. When has full rank, we can assign information bits to some column blocks. (For our convenience, we call these column blocks information column blocks). Then the code with is referred to as a QC LDPC code. Furthermore, let be the expoment matrix of given by

An example of a parity-check matrix for a QC LDPC code with and is given by

Proposed structure
The structure of the proposed QC LDPC code is depicted in Figure 1. The proposed code can be regarded as a QC LDPC code obtained by concatenating a small QC LDPC and many single parity-check codes. The more single parity-check codes are concatenated, the lower rate QC LDPC codes can be obtained. Furthermore, the structure of single parity-check (SPC) extension from the higher rate code could be a good candidate to support IR-HARQ since the SPC extension makes it possible to create additional parity bits as much as needed. Note that when puncturing of single parity-check bits (so called degree-1 parity bits) to obtain a high code rate, the punctured parity bits are completely ignored in the LDPC decoder.
[image:]
Figure 1. Structure of proposed QC LDPC code
Lifting method
When adjusting the size of circulant permutation matrices according to the target code block size, each exponent indices can be easily calculated by the specified formula. For example, we can obtain the exponent matrix for the parity-check matrix from the exponent matrix for the parity-check matrix as follows:
[Lifting]

Here, is the parity-check matrix consisting of circulant permutation matrices and/or zero matrices for given integer and is an integer function of and .
We propose the lifting function as follows:

where means a modulo operation . Note that for , the exponent matrices have exactly the same integer entries. Therefore, if , a given exponent matrix for can create exponent matrices corresponding to parity-check matrices.
[image:]
Figure 2. Lifting technique for length compatibility
Shortening
If the information block size is after the segmentation of transport block, we first apply the proposed lifting to a given exponent matrix with submatrices in Section 2.2. Here, is the least positive integer satisfying , i.e., is the positive integer such that . Then, we can derive the parity-check matrix for the QC LDPC code from the exponent matrix by -lifting. As described in Figure 3, zeros are inserted to () bits for shortening and they are not transmitted, which is also known to the receiver. Note that since due to the minimality for the choice of , the maximum shortening size is .
In this contribution, for our convenience, we assume that the shortening is applied to the last () information bits, as depicted in Figure 3.
[image:]
Figure 3. Concept of shortening LDPC codes

Puncturing and Repetition
Rate-matching can be simply implemented in the same manner as LTE standard. First, the information block is shortened to fit the number of information size and then the puncturing is applied to some information or parity bits to support variable code rates, as described in Figure 4.
[image:]
Figure 4. Concept of rate-matching process
Note that the parity puncturing is sequentially applied from the last parity bits in reverse order.
To support code rate lower than a given LDPC code, we apply repetition. The repetition is applied as described in Figure 4.

[bookmark: _GoBack]Observation 1: QC LDPC codes constructed by the lifting, shortening and puncturing support variable code rates efficiently.
Proposal 1: To support the rate-compatibility of QC LDPC codes comparable to that of turbo code, the lifting, shortening, and puncturing techniques should be adopted.

References
[1] R1-164813, "Chairman’s note," 3GPP TSG RAN WG1 #85, Nanjing, China, May 23-25, 2016.
[2] R1-166769, Samsung, "Discussion on Length-Compatible Quasi-Cyclic LDPC Codes," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26 Aug. 2016.
[3] R1-166770, Samsung, "Discussion on Rate-Compatible Quasi-Cyclic LDPC Codes," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26 Aug. 2016.
[4] R1-164812, Samsung, "Preliminary evaluation results on Quasi-Cyclic LDPC codes," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26 Aug. 2016.

Appendix: Example of Parity-Check Matrix
3
4

- , , : 98, 66, 32
- Maximum variable and check degrees: 15, 19
- No. of layers: 16
- The information bits corresponding to the first two column blocks are always punctured.
- Lifting function:

- The code rate can be defined by

where is the number of parity bits to be punctured.

※ Please refer to the excel sheet attached separately.
[image:]

image2.emf
P

a33

P

a34

P

a3(n-

1)

P

a3n

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

P

y

0 0 P

a3

I

... ... I

P

a11

P

a12

P

a13

P

a14

P

a1(n-1)

P

a1n

P

a21

P

a22

P

a23

P

a24

P

a2(n-1)

P

a2n

.

.

.

.

.

.

P

am1

P

am2

. . .

. . .

Z

3

Z

1

L

2

Z

1

Lifting

One parity check matrix to support variable code length

P

a11

P

a12

P

a13

P

a14

P

a1(n-1)

P

a1n

P

a21

P

a22

.

.

.

.

.

.

P

am1

P

am2

. . .

P

am(n-

1)

P

amn

P

x

0 P

am

... 0

P

a33

P

a34

P

a3(n-1)

P

a3n

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

P

y

0 0 P

a3

I

... ... I

P

a11

P

a12

P

a13

P

a14

P

a1n

P

a21

P

a22

P

a23

P

a24

P

a2n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

P

am1

P

am2

P

am3

P

am4

P

amn

. . .

. . .

. . .

. . .

Z

2

Z

1

image3.emf
P

a

13

P

a

1n

P

a

1(k+1)

... ... P

a

1k

P

a

12

P

a

11

P

a

23

P

a

2n

P

a

2(k+1)

... ... P

a

2k

P

a

22

P

a

21

.

.

.

.

.

.

.

.

.

... ...

.

.

.

.

.

.

.

.

.

P

a

m3

P

a

mn

P

a

m(k+1)

... ... P

a

mk

P

a

m2

P

a

m1

Information bits

P

a

13

P

a

1n

P

a

1(k+1)

... ... P

a

1k

P

a

12

P

a

11

P

a

23

P

a

2n

P

a

2(k+1)

... ... P

a

2k

P

a

22

P

a

21

.

.

.

.

.

.

.

.

.

... ...

.

.

.

.

.

.

.

.

.

P

a

m3

P

a

mn

P

a

m(k+1)

... ... P

a

mk

P

a

m2

P

a

m1

Zero-padding

b

1

b

2

b

3

b

4

…… b

(K-2)

b

(K-1)

b

K b

1

b

2

b

3

…....................…..0000000000

image4.emf
Information Block

0

Information Block

0

Parity Bits

(Shortening)

(LDPC Encoding)

Information Block Parity Bits

(Zero Removal)

(Virtual Circular Buffer)

Transmitted

Bits

(n-m)×Z

m×Z

Punctured Bits

(Repetition)

image5.emf
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

0 225 177 172 60 152 172 234 230 251 10 169 144 152 160 171 21 232 1 0

1 99 138 178 134 101 157 177 225 189 112 207 173 25 172 158 195 225 0 0

2 207 101 121 154 187 243 77 119 241 16 113 101 136 205 28 129 0 0 0

3 105 188 123 141 213 55 75 104 113 107 247 120 235 221 107 166 172 0 0

4 198 162 107 152 117 89 58 154 63 111 233 85 189 214 171 59 205 0 0

5 196 88 124 211 170 87 112 88 255 114 217 82 85 170 30 100 1 0

6 197 70 107 199 136 8 0

7 230 100 82 175 148 227 0

8 164 152 99 136 36 147 150 0

9 81 150 108 172 154 98 0

10 165 230 13 173 168 137 0

11 239 229 209 246 182 22 0

12 154 156 141 170 218 141 0

13 101 114 176 180 232 203 0

14 151 213 181 173 173 0

15 180 95 171 215 183 151 0

16 104 118 104 73 2 0 0

17 103 180 145 173 78 205 0

18 137 35 2 171 76 0

19 217 253 222 251 0

20 215 123 118 122 123

21 175 125 187 233 37

22 140 201 85 233 3

23 52 40 54 13 25

24 235 239 211 213

25 204 118 253 117

26 19 57 210 118

27 133 161 203 163 134

28 146 228 77 148

29 178 176 208 240

30 186 245 252 177

31 106 105 180 105

32 115 121 227 105 198

33 213 239 247 147

34 197 88 137 194

35 189 126 119 125 14

36 185 125 51 16

37 91 89 27 42

38 206 107 102 139

39 82 38 85 118

40 83 71 76 85

41 210 194 172 193

42 214 156 215 148

43 181 124 253 171 33

44 182 235 164 3

45 101 49 200

46 123 115 56 17

47 178 179 187 169

48 187 180 117

49 93 108 127 40

50 120 116 127 33

51 74 83 94 35

52 130 183 67

53 53 181 180 14

54 102 108 110

55 242 187 248 160

56 79 76 142 139

57 237 166 119 21

58 131 19 49 32

59 70 125 8

60 249 242 115 245

61 6 86 15 35

62 113 105 232 130

63 54 61 99

64 118 213 118 32

65 102 66 202 67

image1.emf
802.11n-like

P I 0 0

0 I I 0

I 0 I I

P 0 0 I

I

I

I

I

I

I

I

I

I

I

0

Single Parity-Check

Extension

Part-1 Submatrix

Part-2 Submatrix

