3GPP TSG RAN WG1 Meeting #86		R1-167533
Gothenburg, Sweden, 22nd - 26th August 2016
Agenda Item: 8.1.4.1
Source: MediaTek Inc.
Title: Examination of NR Coding Candidates for Low-Rate Applications
[bookmark: _GoBack]Document for: Discussion/Decision

1. Overview
In addition to the coding enhancement to achieve multi-Gbps data rates for NR, there exist equally important demand for NR low-rate applications, including at least control channels and massive MTC. Regarding a cost-effective multi-mode NR-LTE UE implementation, it is very useful if there are up to two NR decoders analogous to LTE low-rate TBCC Viterbi decoder and high-rate Turbo decoder. In addition, the NR low-rate decoder shall be subject to a practical cost constraint, say 1/16 w.r.t. the high-rate one, as in a commercial LTE chip. Keeping the UE demand in mind, this contribution is to examine and compare the NR coding candidates aiming at low-rate applications. In particular, Turbo code, TBCC, and Polar code will be considered.
From the agreement in #84b meeting:
	· Selection of 5G new RAT channel coding scheme(s) will consider,
· Performance
· Implementation complexity
· Latency (Decoding/Encoding)
· Flexibility (e.g., variable code length, code rate, HARQ (as applicable for particular scenario(s)))

and with the observations provided in #85 meeting t-docs, we can deduce the following analysis:
Table 1. Examination on NR coding candidates for low-rate applications (at least control and mMTC)
	Criterion
	Requirement
	Turbo
	TBCC
	Polar

	Performance
	Superior performance with small codeblock sizes
· Shall avoid tailing bit overhead
	∆
	O
	O

	Complexity
	1/16 area w.r.t. the high-rate decoder
· Scaling codeblock size from 8192 to 1000 is not sufficient to shrink Turbo decoder
	∆
	O
	∆ O
(constraint on SCL decoder complexity)

	Latency
	Low latency with small control codeblocks
· Iterative Turbo decoding and successive Polar SC/SCL decoding are subject to longer latency
	∆
	O
	∆

	Flexibility
	Support full rate-matching granularity at O(N) complexity (N: code bit length)
· O(N)-complexity rate-matching identified
	O
	O
	∆ O
(O(N) complexity rate- matching)

Based on the above analysis, one can reach a similar conclusion as for LTE MTC applications:
Proposal 1: Turbo code shall be de-prioritized for NR low-rate applications (at least control and mMTC) due to the tailing bit overhead, higher MAP iterative decoding complexity and latency.
For Polar code, the latency due to successive decoding is concerned, particularly for control channels with large number of blind decoding. Besides it, further technical investigation, however, clarifies:
Observation 1: There exists O(N) complexity rate-matching design for Polar code that can support full rate-matching granularity at linear complexity w.r.t. the code bit length as TBCC
Observation 2: With intended constraint on Polar SCL decoder complexity, 1/16 area w.r.t. the high-rate decoder is feasible.
Observation 3: With the O(N)-complexity rat-matching and the strict cost constraint, Polar code can still outperform TBCC by no less than 1 dB.
With the above observations, the following proposal is suggested:
Proposal 2: For NR low-rate applications, the complexity issues on Polar code rate-matching and decoder cost can be resolved while still achieving superior performance to TBCC. However, there remains to investigate the impact of the successive decoding latency, critical to control channels with many blind decoding attempts, before selecting the coding for NR low rate applications.
This contribution is organized as follows: In Section 2, one O(N)-complexity rate-matching scheme for Polar code is introduced. In Section 3, it is identified that, by constraining the product of Polar SCL decoder list size and code bit length, 1/16 area w.r.t. the high-rate decoder can be achieved. However, adaptive Polar SCL decoder list size w.r.t. the code bit length is suggested to best balance the performance and complexity. In Section 4, the performances of TBCC with Viterbi decoder and Polar code with adaptive SCL decoder will be compared. Finally, conclusions are drawn in Section 5.

2. Achieving Full Rate-Matching Granularity at Linear Complexity
Define the following notations:
· B: Information bit length
· K: Input bit length which equals (I + CRC length)
· N: Code bit length before rate matching; N = 3K for TBCC and being a power of 2 for Polar code
· N’: Code bit length after rate matching
· R = B/N’: Targeted code rate
By full rate-matching granularity at linear complexity, we mean, for every K and R of interest, one can produce N’ code bits at a processing complexity O(N). For LTE TBCC, the circular buffer rate-matching design can achieve this feature as only simple repetition and puncturing are involved. However, for conventional Polar code rate matching, there require good bit re-estimation after code bit puncturing. Gaussian approximation scheme of complexity O(N∙log2(N)) is commonly used with the SNR assumptions for different code rates assumed known in both transmitter and receiver [1]. In [2], it is observed that QUP and the design based on compound Polar code will suffer significant performance loss without good-bit re-estimation, and thus low-complexity design is still demanded.
	To fulfill the demand, the following scheme consisting 3 simple steps is identified:
1. Rate-dependent code bit puncturing:
Apply different deterministic code bit puncturing designs according to the mother code rate, K/N. In particular, one design is to preserve the polarization effect for the good bits when K/N <= 1/4, and the other design apply the known bit puncturing [3] for K/N > 1/4. For more details of the puncturing design, please refer to the Appendix.
2. Input bit loading w.r.t. predetermined good-bit-order list(s):
A good-bit-order list is a sequence of input bit indices where the order indicate the possibility to be selected as a good bit. Such list can be obtained by off-line counting the occurrence for each input bit index over the lists of selected good bit indices under different targeted code rates and corresponding operating SNRs. For each N of interest, one can store one good-bit-order list. But, there exist a useful nested property so that we can store only the good-bit-order list of largest N of interest:
For N1 < N2, the good-bit-order list of N1 can be well approximated by excluding the entries with index value >= N1 (or > N1 if the smallest index is 1) from the good-bit-order list of N2.
In the Appendix, the good-bit-order list of N = 4096 is provided, and those for smaller N can be derived with the above nested property.
3. Good bit skipping along the input bit loading:
With the indication on the indices of punctured code bits, one can finally load the K input bits according to the first K indices from the good-bit-order list that has no puncture indication. Effectively, we skip the good bit indices where the directly connected code bits are punctured.
Below is an illustration with K = 3, N = 8, N’ = 4. First, {c0, c1, c2, c5} are to be punctured by the decided puncturing scheme according to K/N. A predetermined good-bit-order list of the sequence 7, 6, 5, 3, 4, 2, 1, 0 is then applied to load the K input bits. In the third step, u5 is skipped since the code bit c5 of direct connection will be punctured. It can be checked that the proposed 3-step processing can be applied to arbitrary K and N’ with complexity O(N), thus achieving full rate-matching granularity at linear complexity. In Section 4, there will be simulation results showing the effectiveness of the low-complexity rate-matching.
[image:]
Fig. 1 Illustration of O(N)-complexity rate-matching scheme for Polar code

3. Confining the Complexity of the Low-Rate Decoder
In a high-throughput LTE chip, the decoder related area is dominated by the high-rate turbo decoder. On the other hand, the area of the low-rate TBCC decoder can only occupy 1/16 area of the high-rate decoder. For a MTC device, such a stringent area requirement is more important to realize compact cost. For cost-effective NR devices, we shall expect similar area target on NR low-rate decoder, i.e., 1/16 area of NR high-rate decoder.
According to Ericsson’s analysis [4], quoted in Table 2 below, Polar code exhibits large memory complexity. Since both computational and memory complexities of Polar code are related to L ∙ N, i.e., the produce of SCL decoder list size and the code bit number before puncturing, we propose to pose a stringent constraint on L ∙ N value for NR low-rate applications, corresponding to scaling down the complexities by 1/64. By exploiting the experience that logic and memory areas of Turbo and LDPC are similar, it can be deduced that 1/16 area target is feasibility by constraining L ∙ N.
Table 2. Complexity comparison among NR coding candidates (part of the data is quoted from [4])
	Complexity comparison per decode
	Description
	Nr adders
[adder equivalents]
	Memory
[bits]
	Note

	LDPC
	20 iterations
	18,620,000
	958,000
	K = 8,192
Code rate = 1/3
Polar N = 32,768
SCL list size L = 32
Complexity

	Turbo
	8 iterations
	12,176,000
	925,000
	

	Polar
	1 decode, list 32
	 9,000,000
	6,300,000
	

	Suggested Polar
(for low rate)
	1 decode,
N-dependent list size
	 140,625
	 98,438
	Constrain

To optimize the performance under the constraint, we further propose N-dependent SCL decoder list size regarding that Polar code with larger N can perform better and require a smaller list size. Since the SCL decoding can be implemented by recursively scheduling an atomic unit processing a fraction of N and L [5], the adaptive SCL list size can be realized by switching the scheduling control. Regarding the control and mMTC settings of interest, the following setting:
· L = min{32, 16384 / N}
· N <= 4096 (and do repetition if more code bits can be accommodated)
can be effective for optimizing the performance under the complexity constraint.

4. Performance Comparison
In this section, simulation results are provided for:
1. Checking if the suggested O(N)-complexity rate-matching scheme can work well by comparing QUP of good bit re-estimation post puncturing
2. Examining the performance of Polar code with the proposed complexity reductions by comparing TBCC performance
For the comparisons, all possible specifications on (N’, N, L) for information bit length and code rates of interest are listed below. The assumed CRC length is 24 bits.
	
(N’, N, L)
	Information bit length I (Input bit length K = I + 24 bit CRC)

	
	20 (K=44)
	40 (K = 64)
	100 (K = 124)
	200 (K = 224)
	600 (K = 624)
	1000 (K = 1024)

	Code rate
	1/12
	(240, 256, 32)
	(480, 512, 32)
	(1200, 2048, 8)
	(2400, 4096, 4)
	(36007200*, 4096, 4)
	(400012000*, 4096, 4)

	
	1/6
	(120, 128, 32)
	(240, 256, 32)
	(600, 1024, 16)
	(1200, 2048, 8)
	(3600, 4096, 4)
	(30006000*,
4096, 4)

	
	1/3
	(60, 64, 32)
	(120, 128, 32)
	(300, 512, 32)
	(600, 1024, 16)
	(1800, 2048, 8)
	(3000, 4096, 4)

* Red-colored code bit number is generated via repetition after Polar code encoding and rate-matching.
	
(N’, N, L)
	Information bit length I (Input bit length K = I + 24 bit CRC)

	
	20 (K=44)
	40 (K = 64)
	100 (K = 124)
	200 (K = 224)
	600 (K = 624)
	1000 (K = 1024)

	Code rate
	½
	N/A
	(80, 128, 32)
	(200, 256, 32)
	(400, 512, 32)
	(1200, 2048, 8)
	(2000, 2048, 8)

	
	2/3
	N/A
	N/A
	(150, 256, 32)
	(300, 512, 32)
	(900, 1024, 16)
	(1500, 2048, 8)

	
	5/6
	N/A
	N/A
	N/A
	(240, 256, 32)
	(720, 1024, 16)
	(1200, 2048, 8)

In Fig. 2, the performance of O(N)-complexity rate-matching (in blue color) is compared with that of QUP rate-matching (in red color). It can checked that the performance difference is small for various codeblock sizes and code rates, indicating the effectiveness of the O(N)-complexity rate-matching scheme. Note that, due to reduced SCL list size and simple repetition scheme, the performance can become slightly worse with large codeblocks.
[image:]
Fig. 2 O(N)-complexity rate-matching (blue curves) v.s. QUP with good-bit re-estimation (red curves)
	In Fig. 3, the performance of Polar code (in blue color) and that of TBCC (in red color) are compared, where Polar code is equipped with O(N)-complexity rate-matching and subject to the strict constraint L ∙ N ≤ 16384. Yet, by virtue of N-dependent SCL decoder list size, there still exhibits no less than 1 dB gain universally over various codeblock sizes and code rates, which verifies the feasibility of low-complexity and high-performance Polar code for NR low-rate applications.
[image:]
Fig. 3: Performance comparison of reduced-complexity Polar code (blue) v.s. TBCC (red)

5. Summary
In this contribution, the coding candidates for NR low rate applications, particularly control channels and mMTC, are examined. In particular, we first have
Proposal 1: Turbo code shall be de-prioritized for NR low-rate applications (at least control and mMTC) due to the tailing bit overhead, higher iterative decoding complexity and latency.
For Polar code, the latency due to successive decoding is concerned, particularly for control channels with large number of blind decoding. Besides it, further technical investigation, however, clarifies:
Observation 1: There exists O(N) complexity rate-matching design for Polar code that can support full rate-matching granularity at linear complexity w.r.t. the code bit length as TBCC
Observation 2: With intended constraint on Polar SCL decoder complexity, 1/16 area w.r.t. the high-rate decoder is feasible.
Observation 3: With the O(N)-complexity rat-matching and the strict cost constraint, Polar code can still outperform TBCC by no less than 1 dB.
With the above observations, the following proposal is suggested:
Proposal 2: For NR low-rate applications, the complexity issues on Polar code rate-matching and decoder cost can be resolved while still achieving superior performance to TBCC. However, there remains to investigate the impact of the successive decoding latency, critical to control channels with many blind decoding attempts, before selecting the coding for NR low rate applications.

References
[1] R1-164039 “Polar codes - encoding and decoding”, Huawei, HiSilicon
[2] R1-165454 “Discussion on Polar code design and performance”, Mediatek
[3] R. Wang and R. Liu, "A Novel Puncturing Scheme for Polar Codes," IEEE Communications Letters, vol. 18, no. 12, pp. 2081-2084, Dec. 2014.
[4] R1-164360 “Analysis of candidate code types for long block length”, Ericsson
[5] R1-164040 “On latency and complexity”, Huawei, HiSilicon

Appendix – Supplement for O(N)-Complexity Rate-Matching Scheme
In the Appendix, more specification will be supplied so that companies interested in the scheme can easily reproduce the simulations. First, we assume the following type of input-output connection for Polar encoding. Let P = N – N’ be the targeted number of punctured code bits, then we can specify:
· Puncturing scheme for low mother code rate, i.e., K/N ≤ 1/4:
· Puncture cj for j = 0, …, min(P, N/4) – 1.
· If P > N/4, further puncture cj for both
· j = N/4, …, N/4 + ceil((P – N/4) / 2) – 1
· j = N/2, …, N/2 + floor((P – N/4) / 2) – 1
· The following is an example with K = 1, N = 8, N’ = 4, P = 4, and it can be checked that the puncturing design is to preserve the polarization effect for the input bit(s).
[image:]
· Note that, for the decoding, the LLR(s) of the punctured code bit(s) will be set to zero before feeding into the decoder.
· Puncturing scheme for higher mother code rate, i.e., K/N > 1/4:
· For the case, we apply the known-bit puncturing in [3], where cj with j = (N – P), …, N-1 will be punctured. Note that since the P punctured code bit(s) will be all zero with their directly connected input bit(s) set to zero, the LLR(s) of the punctured code bits will be set to non-zero value(s) of a large amplitude for the high confidence of receiving a known zero on the code bit(s) before feeding into the decoder.
· The following is an example with K = 3, N = 8, N’=6, P=2. Since setting a large LLR for the known code bits will effectively break those shadowed connections, there also reduce interference for the selected input bits (marked by green color).
[image:]

For the predetermined good-bit-order list, below we provide the list for N = 4096. As noted previously, the list for N < 4096 can be extracted from the list via the following nested property:
For N1 < N2, the good-bit-order list of N1 can be well approximated by excluding the entries with index value >= N1 (or > N1 if the smallest index is 1) from the good-bit-order list of N2.
The list is not unique, and there shall exist more systematic design(s) to generate the list efficiently.

[image:][image:]
[image:][image:]
[image:][image:]
[image:][image:]
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image1.png

image2.png

