3GPP TSG RAN WG1 Meeting #86	R1-167240
Gothenburg, Sweden, August 22nd - 26th, 2016

Agenda Item:	8.1.4.1
Source:	Huawei, HiSilicon
Title:	On polar decoders
Document for:	Discussion and Decision

[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In this contribution we focus on the design of polar decoder for NR [1]. Although we use CA-SCL-32 for simulations, simplifications can be made to further reduce computational and implementation complexity while keeping the same performance. We give an example of a decoding architecture, referred to as prioritized parallel decoder (PPD), which yields almost the same performance as SCL but only requires a fraction of processing elements (PE) and RAM resources.
Polar decoder design for NR
Baseline decoding methods

SC list (SCL) decoding [2]: The SC decoder generalizes SC decoding by maintaining a list of candidates at each decoding step, where the list size is . During list decoding, the L paths with the best path metric are kept. At the end, the path with the best path metric is chosen as the final decoding result.
SC stack (SCS) decoding [3][4]: The stack decoder is another generalization of SC decoder that, similar to SCL, develops a number of candidates during decoding. The difference is that, instead of keeping all candidate paths of the same length, SCS develops the path with the most likely path. If the number of paths of a certain length reaches L, all shorter paths are deleted from the stack. When L is set to the same as in SCL and a sufficiently large Q is used, SCS has the same performance as SCL.
Complexity comparisons
Table 1 Comparison of decoders
	
	SC
	SCL
	SCS
	PPD

	Computational complexity
	O(N*log2(N))
	O(L*N*log2(N)) + O(L*(N-1)) + K* O(2*L*log2(2*L)).
	O(L*N*log2(N)) + O(L*(N-1)) + K* O(Q*log2(Q)).
	Average: 10% SCL
Worst: SCL

	Memory Size
	1*SC (very small)
	L*SC (big)
	Q*SC (big)
	l*SC, l=1/4*L
(medium)

	Latency
	Very Short
	Medium
	Average: medium
Worst case: longer
	Average: low
Worst case: medium

	Throughput
	Very High
	Medium
	Average: medium
Worst case: Low
	Average: high
Worst case: medium

Prioritized parallel decoder (PPD)
Computational complexity
In SCL decoder, the main decoding complexity arises from LLR computation and sorting operations. Most of the complexity can be reduced by pruning, split reducing and a modified path metric.
Pruning: PPD decoder allows to prune the paths that are sufficiently worse than the best path in terms of path metric, even to prune all paths with worse path metric than a pre-defined threshold.
Table 2: LLR computation reduction
	BLER
	LLR computation by pruning (SCL-32=100%)

	10-1
	50%

	10-2
	20%

	10-3
	7%

Split Reducing: In SCL, the newly extended paths are sorted K times. However, by examining the a prior and a posterior LLR of each information bit, the sorting complexity can be dramatically reduced.
· The splitting rule is: A decoding path only splits upon a bit that is unreliable according to both a prior and a posterior knowledge. For the remaining bits, the path will not split.
· The corresponding sorting rule is: sorting is only required upon path split.
Table 3: Sorting complexity reduction
	BLER
	Sorting complexity by split reducing (SCL-32=100%)

	10-1
	15%

	10-2
	6%

	10-3
	2%

Enhanced Parallelization
Due to the very low splitting rate, a decoding path usually proceeds without the need to be pushed to or popped from the queue, which implies a kind of highly parallelized memory organization and high efficiency of PE utilization. In this case, the decoding path behaves the same as a standalone SC decoder. Multiple paths of this type can be developed in parallel, as shown in the figure below

Figure 1: Prioritized parallel decoding architecture
In the block diagram, there are eight parallel processing units, each of which contains a RAM unit for storing the LLR table and a processing element (PE) for computing the LLRs. If a processing unit reaches a splitting point, the two newly generated paths will be pushed into the priority queue. Meanwhile, a path in the buffer will be filled into the vacated processing unit for further processing. Subsequently, a path with the best path metric will be popped out to fill the path buffer. In this way, the PE will never be idle in waiting for the result of the queue operation.
The parallel computing architecture, as shown above, yields a high degree of parallelism due to the following two reasons:
1. The l best paths run in parallel. The splitting rate is very low (<10% for BLER=10-1 and <3% for BLER=10-2). Given the “queue operation rule”, in most cases all paths proceed without interacting with outside modules (other parallel processing elements or the queue). Techniques used in fast-SSC decoding [5] can be adopted for highly-efficient decoding.
2. The priority queue and the l paths are processed in parallel. Because all paths have different lengths and thus reach their “splitting points” asynchronously, the queue operations (push/pop) are also done in an asynchronous fashion. When queue operations are performed, the non-splitting paths are not affected. Note that in SCL, after decoding each bit, all paths need to wait for the sorting operations before decoding the next bit. This “sorting delay” can be reduced greatly in PPD with the parallel processing architecture.
Area efficiency
The most area-consuming of a polar decoder are for storing path metrics and LLR tables, which take up about 80% of the RAM. We show that they can be much reduced given proper re-design.
New Path Metric: both a priori and a posterior knowledge can be exploited to define a path metric that works better in PPD. The a priori knowledge is used to offset the average penalty received during path extension. The modified path metric not only speeds up decoding, but also greatly reduces the required priority queue size Q.
LLR table storage: In SCL, LLR tables are the most space-consuming part. In contrast to SCL that requires L parallel processing units (including RAM and PE), PPD only requires l parallel processing units (l<L). We leverage the observation that the LLR tables of all paths are highly redundant. Two paths with a common split point (on the decoding tree) share the same LLRs before that splitting point.
[bookmark: _GoBack]Table 3. Area efficiency improvements
	Maximal width of decoding tree L
	Required RAM for LLR tables

	
	SCL
	PPD

	32
	32
	8

Performance
We simulated a set of code length and code rate. The results in Figures 2 and 3 show that the PPD has almost the same performance as CA-SCL-32.
[image: C:\Users\q00251612\AppData\Roaming\eSpace_Desktop\UserData\q00251612\imagefiles\58C2C86C-0135-4464-BFBB-1E7C5B3F5B5B.png] [image: C:\Users\q00251612\AppData\Roaming\eSpace_Desktop\UserData\q00251612\imagefiles\623CDB83-72A9-441F-B2D8-B1235077B937.png]
Figure 2									Figure 3
We also show the computational complexity of a PPD-8 decoder. Specifically, we counted the total number of bits decoded and split times with respect to a SCL-32 decoder. The former represents LLR computations and the latter represents sorting cost. Results are shown in Figures 4 and 5. At BLER=10-1, PPD-8 only requires 50% LLR computations and 15% sorting complexity compared with SCL-32. At BLER=10-2, PPD-8 only requires 20% LLR computations and 5% sorting complexity. When the target BLER reaches 10-3, PPD-8 only requires 7% LLR computations and 2% sorting complexity. This is a huge gain from SCL-32.
[image:]
Figure 4											Figure 5

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Conclusion
In this contribution, we described a polar decoding architecture called PPD that can significantly reduce the implementation complexity with respect to an SCL-32 decoder while providing the same performance. Two remarks on PPD are as follows:
1. By prioritizing the paths with better path metrics, the decoder converges to the correct path faster.
2. By applying split reducing, the degree of parallelism is improved significantly.
The PPD is an example of optimizations that can be done at the decoder side. Hence while performance evaluation and calibration of results can be done based on the SCL-32 decoder, complexity analysis has to take into account simplified algorithms that exhibit the same performance.
We have the following observation:
Observation: The efficiency of polar decoding algorithms can be significantly improved. Further discussions on highly efficient polar decoding schemes should be conducted.
References
[bookmark: _Ref457980240]Chairman’s notes RAN1 #85.
[bookmark: _Ref457980260]I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory, vol. 61, no. 5, May 2015.
[bookmark: _Ref457980295][bookmark: _Ref457980543]Niu K, Chen K. Stack decoding of polar codes[J]. Electronics letters, 2012, 48(12): 695-697.
[bookmark: _Ref457980370]Miloslavskaya V, Trifonov P. Sequential Decoding of Polar Codes[J]. IEEE Communications Letters, 2014, 18(7): 1127-1130.
[bookmark: _Ref457980884]G. Sarkis and W. J. Gross, “Increasing the throughput of polar decoders,” IEEE Commun. Lett., vol. 17, no. 4, pp. 725–728, April 2013.

image2.emf
Queue

PE PE PE PE PE PE PE

Pop Path

PE

LLR tables

(before

save

points)

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLRs (after save points, online computing)

Path

Look for parent save point

Path 0 Path 1

Split

Push Paths

Path buffer

Buf Buf Buf Buf Buf Buf Buf Buf

oleObject2.bin
Queue

PE

PE

PE

PE

PE

PE

PE

Pop Path

PE

LLR tables (before save points)

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLRs (after save points, online computing)

Path

Look for parent save point

Path 0

Path 1

Split

Push Paths

Path buffer

Buf

Buf

Buf

Buf

Buf

Buf

Buf

Buf

image3.png
BLER

Length 256 Polar Codes

3, CA-SCL32
3, New decoder
/2, CASCL-32
/2, New decoder
/4, CASCL-32

15

Eb/NO

25

image4.png
Length 1024 Polar codes

107

102

—&— R=1/2, CASCL-32

18 2 22 24 26 28

image5.png
512/1024 Polar code 512/1024 Polar code

09

08

[ik4

Reduction)

BLER=10" 0

05

04

BLER =102

03

BLER=10"

BLER =102 02

Sorting Complexity (Spli

—102
BLER=102 g cp_ 193
01 01

Eb/NO Eb/NO

image1.wmf
L

oleObject1.bin

