
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]3GPP TSG RAN WG1 Meeting #86	R1-166473
Gothenburg, Sweden 22nd - 26th August 2016

Source:	CATT
Title:	Low complexity decoding algorithm for Turbo codes

[bookmark: Source][bookmark: DocumentFor]Agenda Item:	8.1.4.1
Document for:	Discussion/Decision

Introduction
The following agreements and observations have been reached on the support of channel coding design for 5G new radio [1]-[2].
Agreements:[RAN1 #84]
· Candidates for 5G new RAT data transmission are identified as the following
· LDPC code
· Polar code
· Convolutional code (LTE and/or enhanced convolutional coding)
· Turbo code (LTE and/or enhanced turbo coding)
· Note: It is RAN1 common understanding that combination of above codes is not precluded
· Note: Outer erasure code is not precluded
· Selection of 5G new RAT channel coding scheme(s) will consider,
· Performance
· Implementation complexity
· Latency (Decoding/Encoding)
· Flexibility (e.g., variable code length, code rate, HARQ (as applicable for particular scenario(s)))
Observations:[RAN1 #85]
· At least in AWGN channels:
· For large information block sizes,all candidate channel coding schemes show comparable link performance
· Further study is required on all potential coding schemes in order to determine which coding scheme(s) should be supported, including:
· Implementation details should be provided for the decoding algorithms used in the simulation results, e.g. survey on the existing implementation efforts
Agreement: [RAN1 #85]
· Include file format of results with contribution
· [bookmark: OLE_LINK19][bookmark: OLE_LINK20]Use excel file template provided in ExampleResults.xlsx
· Multiple columns for
· QAM, Rate, Info. Blocklength, Es/N0, Eb/N0, BLER
· Separate tab to provide context
· Contribution#, name of code, decoder implementation, #iterations or list size, brief details of code construction, brief details of rate matching algorithm, #CRC bits, and other parameters
· The referenced accompanying contribution should provide enough details to enable other companies to repeat the simulations
· Companies encouraged to submit with their contribution for RAN1 #86

In this contribution, we further discuss the new low complexity decoding algorithm T-SOVA of Turbo codes. The performance results of binary Turbo codes of the proposed decoding algorithm and the reference Max-log-MAP algorithms on AWGN channel are shown. The complexities of different Turbo decoding algorithms along with LDPC and Polar decoding algorithms are also analyzed.

Discussion
[bookmark: OLE_LINK10][bookmark: OLE_LINK11]The major scenarios for 5G new radio are eMBB (enhanced Mobile Broadband), mMTC (massive Machine Type Communications) and URLLC (Ultra-Reliable and Low Latency Communications). The target of eMBB communication is to provide peak throughput at least 20Gbps. The channel codes with the long code block (such as more than 10000 bits) and high speed decoding capacity are the best choice for eMBB. In mMTC and URLLC, selection criterions of channel codes are good performance for small code block with low energy consumption and low cost and very low latency.
The existing LTE Turbo coding scheme will face a great challenge to meet the higher requirements of minimal processing time for low latency data transmission in the NR system. The high complexity and memory consumption of the traditional decoders, e.g., Log-MAP, Max-Log-MAP and SOVA[3][4][5],are the major obstacles of Turbo codes to be applied in NR.
1.1 Trimming Soft-Input Soft-Output Viterbi Algorithm
In this contribution, we further discuss the effective decoding algorithm, Trimming Soft-Input Soft-Output Viterbi Algorithm (T-SOVA), to reduce the complexity of traditional decoding schemes of Turbo codes.
T-SOVA searches for the ML path and selects the obtained LLRs based on SOVA. Because smaller metric differences are more likely to determine the LLRs than that of larger ones, T-SOVA only conducts backtracking operations on the related competitive paths of these metric differences by picking up M smallest ones among the metric differences. Next, the omitted LLRs are estimated from the calculation of neighboring LLRs and the intrinsic information from channel. Hence, T-SOVA provides good LLR quality with reduced backtracking operations to at most 1/M of that of SOVA. Extrinsic information transfer chart (EXIT chart) analysis shows that T-SOVA with moderate M has similar convergence behavior as that of the Log-MAP algorithm. Moreover, simulation results on Turbo codes indicate that T-SOVA outperforms bi-SOVA and M-SOVA, and performs as well as S-SOVA and Log-MAP. T-SOVA algorithm is summarized as follows and the details in [6].

[bookmark: OLE_LINK9][bookmark: OLE_LINK12]1) Search the ML path by the modified Lazy Viterbi Algorithm (VA). At the first stage, VA calculates the metric differences and find the ML path. At the second stage, it backtracks the competitive paths of each state node and updates the magnitude of LLR for each of previous bit within backtracking length δ. It is assumed that m(s, t) is the path metric ending at state s at time slot t, cm(s, t) is the competitive path metric ending at state sat time slot t, and the metric difference of state s at time slot t is ∆(s, t) = m(s, t) − cm(s, t). The metric differences between ML path and the competitive path are denoted as, where L stands for the length of the information bits. Thus, the LLR for each time slot t is :

						(1)

whereis the index set in the competitive path of the opposite decision bits with ML path at time slot t, and is the backtracking length.

2): According to (1), at time slot , the LLR can be written as follows:

					(2)

If the index of time slot belongs to both and, its metric difference would affect both |LLR(t+q)| and |LLR(t)|. Thus for the backtracking of neighboring LLRs, a certain numbers of metric differences may be repeatedly involved, which means that the amplitudes of LLRs change slowly. Thus the metric differences can be seen as L samples. Apparently, the smaller metric differences are more likely to determine the final LLRs. In other words, the smaller ones are chosen to ensure the quality of LLRs.
If the number of the obtained metric differences of the ML path is larger than L/M, we will pick up L/M smallest ones among them. Conduct backtracking operations on the related competitive paths of these metric differences.
3): Check the LLR magnitude at each time slot.
4): According to step 2, any discarded LLR has larger magnitude than that of its minimal neighboring obtained LLR. The neighboring LLRs can be obtained from the obtained LLR as follows:

,			(3)

where LLR(t) is the omitted LLR, is the minimal obtained LLRs among .
The second part of the estimation of LLRs is given by channel intrinsic information, which can be obtained by

		(4)

whereis the channel reliability factor. and represent the received symbol and the codeword bits at time slot l respectively. stands for the information bit at time slot l and is the prior information.We estimate LLRs by combining neighboring LLRs in (3) and intrinsic information in (4), which is written as follows:

				(5)

5): We use two scaling factors and to improve the values of extrinsic information output of T-SOVA,

					(6)

[bookmark: OLE_LINK15][bookmark: OLE_LINK16]where and denote the extrinsic information and intrinsic information of time slot l respectively. According to the analyses, there won’t be significant performance degradation if M is not larger than 16. Thus, T-SOVA with various M and parameters are simulated to verify this analysis results. Simulation results show that if the trimming factor is moderate, e.g. M = 4, 8, 16, T-SOVA with appropriately scaling factors θ1 and θ2 performs closely to Log-MAP and S-SOVA, and outperforms the other variants of SOVA.

1.2 Simulation results
[bookmark: OLE_LINK17][bookmark: OLE_LINK18]For eMBB applications, we compare the performance of the Scaled Max-Log-MAP with scaling factor 0.75, Max-Log-MAP and TSOVA decoding algorithms for various code block length(K=1008, 2016 and 4032) and code rates(1/5, 1/3,2/5,1/2, 2/3,3/4 and 5/6) for LTE Turbo codes.
The simulations are conducted over the BI-AWGN channel with QPSK and 64 QAM modulations. The maximum iteration number is set to 8 for all decoding algorithms. The trimming factor of the TSOVA algorithm is set to 8.
The simulation results are shown in figure 1-6 and more detailed simulation parameters and results can be found in the excel file attached.

[image:]
[bookmark: OLE_LINK21][bookmark: OLE_LINK22][bookmark: OLE_LINK1][bookmark: OLE_LINK2]Figure 1: Performance of LTE-Turbo code with informationblock length of 1008 bits andQPSK modulationat different code rates.

[image:]
Figure 2: Performance of LTE-Turbo code with informationblock length of 1008 bits and 64QAM modulationat different code rates.
[image:]
Figure 3: Performance of LTE-Turbo code with informationblock length of 2016 bits and QPSK modulationat different code rates.

[image:]
Figure 4: Performance of LTE-Turbo code with informationblock length of 2016 bits and 64QAM modulationat different code rates.

[image:]
Figure 5: Performance of LTE-Turbo code with informationblock length of 4032 bits and QPSK modulationat different code rates.

[image:]
Figure 6: Performance of LTE-Turbo code with informationblock length of 4032 bits and 64QAM modulationat different code rates.

It is shown from Figure 1-6 that the TSOVA algorithm can achieve almost the same BLER performance as Max-Log-MAP. It is also noted that TSOVA algorithm can outperform Max-Log-MAPas described in [7], if scaling factors and are further optimized for specific code rates and modulations.

It is worth mentioning that there are only minimization operators in the LLR computation (2) of TSOVA. However, there are summation operators in the LLR computation of Max-Log-MAP. Thus, TSOVA is more robust to quantization than Max-Log-MAP. As a result, the performance between TSOVA and Max-Log-MAP in hardware is very similar.

Observation 1: The performance of TSOVA decoding algorithm has slightly edge over that of the Max-Log-MAP algorithm for the large block size Turbo codes.

1.3 Complexity analysis of Turbo decoding algorithms
Computational complexity is an important index in the evaluation of the decoding algorithms. We compare the computational complexities of several decoding algorithms for LTE-Turbo codes and present in Table 1.

Table 1: Decoding complexity per iteration for binary Turbo codes
	
	Log-MAP
	Max-Log-MAP
	TSOVA

	Additions
	

	

	

	MAX process
	

	

	

	Look-up-table operations
	

	NA
	NA

Notations: for information block length, for memory length of component code of Turbo code, for backtracking length, for trimming factor. There are two component codes for the LTE-Turbo code. Number of multiplication is included within additions by considering log domain processing.

For complexity evaluation of TSOVA decoding algorithms, four cases with code rates R= 1/3 are provided as follows:
·
Code 1: LTE-Turbo code with information block lengthbits.
·
Code 2: LTE-Turbo code with information block lengthbits.
·
Code 3: LTE-Turbo code with information block length bits.
·
Code 4: LTE-Turbo code with information block length bits.
The computational complexity of the Code1~Code4are presented in Table 2~Table 5, respectively. As shown in Table 2-Table 5, the total computational complexity of TSOVA algorithm for LTE-Turbo codes is about 43% of that of the Max-Log-MAP algorithm and 13% of that of the Log-MAP algorithm. Thus, the TSOVA has distinct advantage of the decoding complexity over both Max-Log-MAP and Log-MAP decoding algorithms.

Table 2: Decoding complexity analysis per iteration for Code1 in eMBB
	
	Log-MAP
	Max-Log-MAP
	TSOVA

	
	Code 1
	Code 1
	Code 1

	Additions
	387072
	258048
	131040

	MAX process
	129024
	129024
	34272

	Look-up-table operations
	774144
	0
	0

	Total
	1290240
	387072
	165312

Table 3: Decoding complexity analysis per iteration for Code2 in eMBB
	
	Log-MAP
	Max-Log-MAP
	TSOVA

	
	Code 2
	Code 2
	Code 2

	Additions
	774144
	516096
	262080

	MAX process
	258048
	258048
	68544

	Look-up-table operations
	1548288
	0
	0

	Total
	2580480
	774144
	330624

Table4: Decoding complexity analysis per iteration for Code3 in URLLC and mMTC
	
	Log-MAP
	Max-Log-MAP
	TSOVA

	
	Code 3
	Code 3
	Code 3

	Additions
	38400
	25600
	13000

	MAX process
	12800
	12800
	3400

	Look-up-table operations
	12800
	0
	0

	Total
	64000
	38400
	16400

Table5: Decoding complexity analysis per iteration for Code4 in URLLC and mMTC
	
	Log-MAP
	Max-Log-MAP
	TSOVA

	
	Code 4
	Code 4
	Code 4

	Additions
	110592
	73728
	37440

	MAX process
	36864
	36864
	9792

	Look-up-table operations
	36864
	0
	0

	Total
	184320
	110592
	47232

Notations: Memory length of component code of each Turbo code .Assuming the computation costs of Addition: MAX: Look-Up-Table = 1:1:6, and.

Observation 2: The computational complexity of TSOVA is much less than those of Log-MAP and Max-Log-MAP for the large block size and small block size Turbo codes.

1.4 Complexity Analysis of LDPC and Polar Decoding Algorithms
We make the same exercise of computational complexity analysis of LDPC and polar codes decoding algorithms. The outputs of the exercise are used for the comparison of the implementation complexity of the considered decoding algorithms for LTE-Turbo codes.
[bookmark: OLE_LINK5]The analysis of the decoding complexities of Turbo, LDPC and polar codes is shown in Table 6 as shown in [8].

The example of the parameters of complexities analysis are as follows,
· The code block length - N=1944 for Turbo and LDPC codes, N = 2048 for polar code,
· The coding rate and operation - R=1/2, m=3, Imax = 8 for Turbo code, Imax = 15, dv = 3.58 and dc = 7.17 for LDPC code, L = 32 for polar code.
· The computational costs of Addition: MAX: Look-Up-Table = 1:1:6, M0=8, δ=8.
The complexity of the codes can be calculated in Table 7. As shown in Table 7, the TSOVA for Turbo codes has the least computational complexity.
[bookmark: _GoBack]
Table 6: Decoding complexity for Turbo, LDPC and polar codes
	
	Turbo
(Max-Log-MAP)
	Turbo
(TSOVA)
	LDPC
(BP) [9]
	Polar
(SCL) [10]

	Additions
	

	

	

	

	MAX process
	

	

	NA
	NA

	Look-up-table
	NA
	NA
	

	NA

Notations: for maximum iteration number, for information block length, for code length, for number of parity bits, for average variable degree of LDPC parity check matrix (PCM), for average check degree of LDPC PCM, for size of list of polar code, for memory length of component code of Turbo code, for backtracking length of TSOVA, for trimming factor of TSOVA. Assume two component codes for the Turbo code.

Table 7: Example complexity analysis for Turbo, LDPC, and polar codes
	
	Turbo
(Max-Log-MAP)
	Turbo
(TSOVA)
	LDPC (BP)
	Polar (SCL)

	Additions
	995328
	513216
	403282
	720896

	MAX processes
	497664
	139968
	NA
	NA

	Look-up-table processes
	NA
	NA
	627231
	NA

	Total
	1492992
	653184
	1030513
	720896

In addition, we compare the implementation complexity between the Max-Log-MAP algorithm and TSOVA for LTE-Turbo codes. TSOVA requires less memory storage for intermediate quantity and less number of address operations compared with those of Max-Log-MAP algorithm. Furthermore, simulation results show that TSOVA requires less quantization bits (about 1 bit) compared with that of Max-Log-MAP algorithm since TSOVA only requires minimum backtracking operations. Therefore, TSOVA decoding algorithm shows not only lower implementation complexity of TSOVA but also beter throughput performance.
TSOVA is suitable for high throughput ASIC implementation. The complexity of TSOVA is dominated by its first stage, which is Viterbi algorithm. It is shown that Viterbi decoders can achieve a throughput of 40Gbps [11].

Observation 3: The performance of TSOVA algorithm is robust to the quantization error. The TSOVA algorithm can support large code block size and achieve20 Gbps throughput in the hardware implementation to satisfy the eMBB operation requirements
Conclusion
In this contribution, we provide a Trimming Soft-Input Soft-Output Viterbi Algorithm (TSOVA) and compare the performance and complexity of TSOVA with different decoding schemes of Turbo codes for eMBB, URLLC and mMTC, respectively. The TSOVA algorithm shows comparable performance with less complexity and achieves higher throughput. Moreover, TSOVA can have similar convergence behavior as that of the Log-MAP algorithm.
The Turbo codes with TSOVA decoding scheme is a promising candidates for NR channel coding to fulfill the requirements.of different deployment scenarios.
The discussion is summarized with the following observations:
· Observation 1: The performance of TSOVA decoding algorithm has slightly edge over that of the Max-Log-MAP algorithm for the large block size Turbo codes.
· Observation 2: The computational complexity of TSOVA is much less than those of Log-MAP and Max-Log-MAP for the large block size and small block size Turbo code.
· Observation 3:The performance of TSOVA algorithm is robust to the quantization error. The TSOVA algorithm can support large code block size and achieve20 Gbps throughput in the hardware implementation to satisfy the eMBB operation requirements
1. References
[1].	RAN1 chairman notes in #84bits
[2].	RAN1 chairman notes in #84bits
[3].	L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol.20, no. 2, pp. 284–287, Mar 1974.
[4].	M.P.C. Fossorier, F. Burkert, S. Lin, and J. Hagenauer, “On the equivalence between SOVA and Log-Map-map decodings,” IEEE Commun. Lett., vol. 2, no. 5, pp. 137–139,May 1998.
[5].	J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its applications,” in Proc. 1989 IEEE Global Commun.Conf, Nov 1989, pp. 1680–1686 vol.3.
[6] Huang, Qin, et al. “Trimming Soft-Input Soft-Output Viterbi Algorithms,”IEEE Transactions on Communications 64.7(2016):2952-2960.
[7].	R1-164251, “Performance evaluation of binary turbo codes with low complexity decoding algorithm”, CATT
[8].	R1-162897 “Performance and complexity of Turbo, LDPC and Polar codes”
[9].	W. E. Ryan, S. Lin, “Channel Codes: Classical and Modern”, New York, NY: Cambridge University Press, 2009
[10].	K. Niu, K. Chen, J. Lin, and Q. T. Zhang “Polar Codes: Primary Concepts and Practical Decoding Algorithms” IEEE Communication Magazine, vol. 52, no. 7, pp. 192-203, Jul. 2014.
[11].	T. Veigel, et al., “A Viterbi Equalizer Chip for 40 Gb/s optical communication links,” Microwave Integrated Circuits Conference (EuMIC), European IEEE, 2013.

image2.wmf
()|min{}

t

i

iD

LLRt

Î

=D

oleObject45.bin

image49.wmf
3

0

((2))

v

m

IOK

M

d

+

+

oleObject46.bin

image50.wmf
(2(21))

mvc

IONdMd

+-

oleObject47.bin

image51.wmf
2

(log)

OLNN

oleObject48.bin

image52.wmf
3

(2)

v

m

IOK

+

oleObject49.bin

image53.wmf
1

0

((2))

v

m

IOK

M

d

+

+

oleObject2.bin

oleObject50.bin

image54.wmf
()

mc

IOMd

oleObject51.bin

image55.wmf
m

I

oleObject52.bin

image56.wmf
K

oleObject53.bin

image57.wmf
N

oleObject54.bin

image58.wmf
M

image3.wmf
{1,2,...,}

t

Dttt

d

Í+++

oleObject55.bin

image59.wmf
v

d

oleObject56.bin

image60.wmf
c

d

oleObject57.bin

image61.wmf
L

oleObject58.bin

oleObject59.bin

image62.wmf
d

oleObject60.bin

oleObject3.bin

image63.wmf
0

M

oleObject61.bin

image4.wmf
d

oleObject4.bin

image5.wmf
t+q

oleObject5.bin

image6.wmf
|()|min{}

tq

i

iD

LLRtq

+

Î

+=D

oleObject6.bin

image7.wmf
t

D

oleObject7.bin

image8.wmf
tq

D

+

oleObject8.bin

oleObject9.bin

image9.wmf
n

|()||()|,2

LLRtLLRqt<qt

d

»£+

oleObject10.bin

image10.wmf
|()|

LLRq

oleObject11.bin

image11.wmf
{|()|}t+12

LLRllt

d

££+

，

oleObject12.bin

image12.wmf
|()||0.5((1)(1))()|

i

llllll

LLRlLcuuLal

××=+-×=-+

»

rcrc

oleObject13.bin

image13.wmf
4

0

Es

Lc

N

=

oleObject14.bin

image14.wmf
l

r

oleObject15.bin

image15.wmf
l

c

oleObject16.bin

image16.wmf
l

u

oleObject17.bin

image17.wmf
()

Lal

oleObject18.bin

image18.wmf
LLR()|()||()|

ni

lLLRlLLRl

=+

oleObject19.bin

image19.wmf
1

q

oleObject20.bin

image20.wmf
2

q

oleObject21.bin

image21.wmf
21

e()=(()())

LlLLRlLil

qq

××-

oleObject22.bin

image22.wmf
e()

Ll

oleObject23.bin

image23.wmf
()

Lil

oleObject24.bin

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

oleObject25.bin

oleObject26.bin

image30.wmf
3

(32)

v

OK

+

´

oleObject27.bin

image31.wmf
4

(2)

v

OK

+

oleObject28.bin

image32.wmf
3

0

((2))

v

OK

M

d

+

+

oleObject29.bin

image33.wmf
3

(2)

v

OK

+

oleObject30.bin

image34.wmf
3

(2)

v

OK

+

oleObject31.bin

image35.wmf
1

0

((2))

v

OK

M

d

+

+

oleObject32.bin

image36.wmf
3

(2)

v

OK

+

oleObject33.bin

image37.wmf
K

oleObject34.bin

image38.wmf
v

image1.wmf
12

,,...,

L

DDD

oleObject35.bin

image39.wmf
d

oleObject36.bin

image40.wmf
0

M

oleObject37.bin

image41.wmf
2016

K

=

oleObject38.bin

image42.wmf
4032

K

=

oleObject39.bin

image43.wmf
200

K

=

oleObject1.bin

oleObject40.bin

image44.wmf
576

K

=

oleObject41.bin

image45.wmf
3

v

=

oleObject42.bin

image46.wmf
0

8

M

=

oleObject43.bin

image47.wmf
8

d

=

oleObject44.bin

image48.wmf
4

(2)

v

m

IOK

+

