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Introduction
In RAN #71, the technology study item for 5G new RAT (NR) has been approved [1]. For the New Radio Access Technology (NR), there is potential to improve the channel coding across performance and computational complexity while efficiently addressing both blocklength scaling and rate compatibility, including incremental redundancy (IR) HARQ.
In RAN1 #84b, an LDPC code description framework was presented in [6][7] which can support IR HARQ, multiple code rates, and scalable blocklengths. Here we provide a review of this, including the structural characteristics which support high throughputs and low latency, as well as address scalable blocklengths needed in NR.
Details are then provided for code constructions used in the evaluations agreed upon at the RAN1 #84b meeting. The performance results of such constructions are documented in [9] at RAN1 #85.
General LDPC code description
[bookmark: _Ref378529477]Irregular LDPC codes have been shown to be capacity-achieving on the binary-input AWGN channel [2]. While irregular codes can be more complicated to represent and/or implement, it has been shown that irregular LDPC codes can provide superior error correction/detection performance when compared to regular LDPC codes, which has all variable nodes of the same degree and all check nodes of the same degree. In addition to irregularity, advanced LDPC designs, such as 802.11n, often incorporate more structure to improve performance.  This additional structure does not materially change the decoding process, but it can result in improved performance [3].
Many practical LDPC codes are constructed using a process known as lifting. The graphs of these LDPC codes are formed by interconnecting  copies of a smaller graph, sometimes called a base graph or a protograph. We will adhere to the notion of base graph in this document. The base graph defines the (macro) connections between the base variable nodes (associated to codebits) and the base check nodes (associated to the parity-check equations). The proposed base graph consists of a high rate base graph, which we call as the core graph, and degree one parity-bit extension. The proposed base graph construction uses punctured information nodes for good performance. It also contains an accumulate chain of degree two parity-bits which makes the LDPC code easy to encode. There are some degree one parity-bits, which are parity checks of the punctured nodes, and other check nodes with either one or two edges to the punctured nodes. Incremental redundancy Hybrid-ARQ (IR HARQ) codebits for lower rates are obtained from the core graph by forming parities of the existing information and parity-bits in the core graph. This process is known as extension. 
The interconnections between the  copies of the base graph are formed by permuting the edges in like copies of an edge from the base graph. A common choice uses cyclic shift permutations. In this case the resulting LDPC codes are also known as quasi-cyclic codes (802.11n/11ad designs are also quasi-cyclic LDPC codes). One of the motivations for using lifted constructions and cyclic liftings in particular is that it enables efficient parallelization of LDPC decoders. Having hardware capability to process each lifted edge (or equivalently Z actual edges) in one clock cycle enables convenient implementation of a very high throughput decoder (see [5] for an example) to meet the data rate requirements of NR. Such processing capability is inherent in many existing 802.11n hardware implementations. Since the lifting is based on circulant matrices, the encoding operation is greatly simplified. Another reason is that the lifted code has a relatively compact description.  Indeed, in order to specify the LDPC code, only the connections between the codebits and the parity-check equations at the level of the base graph, which is typically small compared the blocklength of the code, needs to be described. The code specification is completed by describing non-negative integers, modulo the lift size Z, for each edge in the base graph. Note that the final code is obtained by replacing each edge in the base graph by a permutation matrix which is the identity matrix of the lift size but shifted cyclically by the integer associated to that edge. The proposed LDPC design is also quasi-cyclic, similar to the 802.11n LDPC code. 
Typically, decoding hardware for LDPC codes is agnostic to the LDPC code design, i.e., once the hardware has been dimensioned for a particular parallelism and memory, multiple base graphs, representing different rates and blocklengths, can be run on the same hardware without any additional cost. Furthermore, adding new codes/base graphs wouldn’t require changing of the decoder hardware. 
An example structure of the LDPC base graph is depicted below. The blue circles correspond to the codebits in the base graph. The red squares correspond to the parity-checks in the base graph. The dongles on the top of each base codebit represents a transmitted bit. The punctured nodes (for enhanced performance), which are not transmitted, have no dongle. The degree two parity-bit accumulate chain is shown on the right with green edges. The size of the example base graph shown below is equal to the number of base variable nodes, 24. Suppose the base graph is lifted by a value , then the final code blocklength, including the punctured nodes, is given by . The transmitted code blocklength would be   To obtain such a (cyclic) lifting, each edge is associated with an integer from the group of integers modulo . Thus, the description of the final PCM also simplifies: it reduces to a description of base graph together with the list of integers, one per base edge, that defines the lifting. 
[image: ]

Figure 1: Example base graph for the LDPC design with blue citrcles denoting the codebits and the red squares denoting the parity-check equations.
Proposed LDPC design details
The coding scheme in the new NR is required to (i) support a large range of rates, (ii) provide a fine granularity of blocklengths and (iii) provide IR HARQ. The coding scheme needs to support the features mentioned above while having good performance and a compact description. Traditional designs such as 802.11n/ad have LDPC base graphs for each code rate and blocklength pair. Since the range and granularity of rates and blocklength required for the NR is large, designing base graphs for each code rate and blocklength pair would incur high description complexity. 
To meet all the above requirements, three base graphs are proposed. Each base graph will be referred to as a family. Each family consists of base graph which contains a collection of nested base graphs. Each family also consists of a set of clustered liftings. Both the notion of nested collection of base graphs and set of clustered liftings will be explained shortly. The sizes of the nested collection of base graphs and the set of clustered liftings are chosen so that, when combined, the family is capable of supporting all information blocklengths , in a specified rage  and all code blocklengths  such that the rate  is in a specified range between  and . In summary, each family is associated with a nested collection of base graphs all of which are determined by the largest base graph in the nested sequence and a collection of lifting sizes.  The family can be associated to a single (the largest) base graph, but it includes a number of smaller base graphs that are subgraphs of the largest base graph.
Nested Base graph structure: The base graph consists of a high-rate core graph (here high-rate need not necessarily mean high in absolute value) and an IR HARQ extension. The high-rate core includes two relatively high-degree punctured variable nodes that are base information nodes, and a set of degree three base information nodes that completes the set of information variable nodes. The parity structure is generally similar to the 802.11n encoding structure with the addition of one degree one-parity bit which is a parity of the two punctured variable nodes. The remainder of the base graph beyond the core graph consists of IR HARQ extension bits which are formed by taking parities of the systematic and parity-bits of the core graph. The entire structure has been optimized (offline) for connections to provide good performance at low complexity across all of the nested subgraphs. Figure 2 depicts the base graph structure used for each family. Various details such as number of systematic information bit-columns and parities are different for the different families and are explained below.

Figure 2: Base graph structure for each family
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For each family, we define quantities  and  as the minimum and the maximum number of base information bit-columns in the nested set of base graphs and  and  as the minimum and maximum number of parity bit-columns. The number of punctured base information bit-columns is denoted by  and is set to two. Multiple base graphs are nested within each other starting at the smallest basegraph over  base information columns and ending with the largest basegraph with  base information columns. For different operating rates supported by the family, different starting base graphs can be selected from the nested collection and used for encoding and decoding.  More precisely, the base graph is described using the maximum number  and the base graphs with smaller base information bits, say kb, are obtained by deleting the  last base information bits. This procedure can be interpreted as shortening at the base graph level. Note, however, that this shortening at the base graph level is different from shortening at the lifted or final code level. In the former, the variable nodes in that base column need not be processed at all by a decoder and the unused, shortened, base nodes are simply removed, thus incurring no additional complexity.  The  parities are added for the IR HARQ extension.   This characterizes the nested set of base graphs in the family and is illustrated in figure 3. 
Set of clustered liftings: Each family has a set of liftings which are given as follows. Consider the set of numbers  and the set of lifts given by  for . For each  the set of lifts  is referred to as the cluster of lifts.  The full set of lifts is given by the set {8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 640, 768, 896}. The lifting values used to cyclically lift the base graph are common for each element of a cluster. For a given family the set of all lifts for a base edge is given by a 21 bit descriptor the details of which are given in Section 6.1.  
Code rate and Blocklength scaling
Codes from each family are generated by choosing a base graph from the nested collection of base graph as mentioned before and combining it with an appropriately chosen lift value from the set of clustered liftings. The size of the selected base graph essentially determines the operating rate point. Each family supports every information blocklength  such that  where  and . Recall from previous section that 8 is the smallest lift value and 896 is the largest lift value associated to each family. 
The maximum rate supported by all of the nested base graphs associated to the family is given by  and the minimum rate supported by the all of the nested base graphs is given by. Note that while the range from  to  is supported by all the blocklengths there are additional rates supported at particular information blocklengths. For example, there is a rate  code, but this rate cannot be supported at all the above stated information blocklengths.  For simplicity of exposition we restrict the use of a family to rates in between   and blocklengths in between . It will be seen later that each family has sufficient range and granularity in rate required for NR.






Figure 3: Base graph structure consists of a minimum and maximum number of base information bit-columns and parity-columns.










	Parameter
	Definition

	
	The maximum number of base information bits in the nested family.  Also the number of base information bits in each families’ specification.

	
	The minimum number of base information bits in the nested family.  

	
	The number of base information bits punctured. (It is set to 2 in all specified families.)

	
	The number of base parity checks in the core.  Also the number of base parity bits in the core.

	
	The maximum number of base parity bits used.

	
	The minimum number of base parity bits used. It may be more or less than cb,core

	
	   ,  the maximum code rate supported by all members of the family

	
	   ,  the minimum code rate supported by all members of the family



With the above definitions and notation, the proposed base graphs details are given next. The three base graphs or three families are denoted as the highest, middle and the lowest family, which indicates the relative code rate of the core portion of the graph.
1. Highest family: This family corresponds to codes with highest absolute rate. The various parameters mentioned previously are as follows: , , ,   and .  It then follows that  and   The associated set of clustered lifts given by  for .  Thus, the minimum information blocklength supported is  and the maximum information blocklength supported is  
2. Middle family: This family corresponds to codes with middle absolute rate. The various parameters mentioned previously are as follows. , , ,   and .  It then follows that  and  The associated set of clustered lifts given by  for . Thus, the minimum information blocklength supported is  and the maximum information blocklength supported is  
3. Lowest family: This family corresponds to codes with lowest absolute core rate. The various parameters mentioned previously are as follows. , , ,   and .  It then follows that  and  The associated set of clustered lifts given by  for . Thus, the minimum information blocklength supported is  and the maximum information blocklength supported is  

	Family
	
	
	
	
	
	
	
	
	
	

	High
	30
	24
	2
	7
	158
	5
	24/27
	30/186
	192
	26880

	Middle
	20
	16
	2
	9
	106
	10
	16/24
	20/124
	128
	17920

	Low
	10
	8
	2
	11
	114
	14
	8/20
	10/122
	64
	8960




Procedure to obtain a code from a family: Consider finding a code with parameters K,N in a given family.  If K is in the specified range and K/N is in the specified range then a solution is guaranteed.  There may be more than one solution.  We first determine a lifting size and the base graph parameters.  The lifted code may require some additional shortening and puncturing, but this is limited, usually to less than one lifted column, except in the case of the highest rate codes.
The following algorithm can be used to determine a suitable base graph and lifting value.
1. Find  so that 
2. Set the number of base graph information variable nodes to   by deleting the last  base information variable nodes from the base graph of the family
3. Append the first  parity variable nodes unless  in which case the  parity variable nodes are appended. (The number of base check nodes is equal to the number of base parity variable nodes.)







Algorithm 1


The base graph and the lift values have been designed so that a solution to 1 is always possible for K in the supported range. In some cases there may be more than one solution.  If K/N is within the supported rate range then it is guaranteed that  is in the range .  When the lifted code will be shortened by padding the K information bits with an additional h zeros. The definition of  ensures that and that if  then K=. This implies that to obtain the desired information blocklength, , we need to shorten less than one column or  worth of information bits in the lifted graph and that the number of information bits is a least .  In general the shortening should be done on the last information column. In the same vein, the amount of puncturing of parity bits required to obtain the desired code blocklength , is at most one column, except in the case of the highest family when a rate higher than the core rate is desired, in which case up to two of the degree two parity bit columns may be punctured. The base graph structure has been designed to have good performance when at most one base information column is shortened and less than one column worth of parity-bits are punctured. 
Example: This example is high rate, requiring puncturing of more than a single parity column. K = 792, N=891 (rate 8/9). Choose Z = 32, kb = 25, shorten by 8 bits. Need 891-792+2*32=131 parity bits. Take 7 parity columns, puncture last 61 bits. There is another solution given by kb = 29, Z = 28, with 20 bits shortened and 45 parity-bits punctured. 
Example:  K=1100, N=2118 (just above rate ½).  High family solution: Z = 40, kb = 28, base parities=30. Shorten by 20 bits, puncture 22 bits. Middle family solutions: A) Z=48, kb = 23, base parities=25. Shorten by 4 bits, puncture 6 bits.  B) Z=56, kb = 20, base parities=22. Shorten by 20 bits, puncture 22 bits.  
From the above it is clear that the information blocklength granularity achieved by each family is of single-bit. Since each family is a collection of nested base graphs a description of only the largest base graph in the sequence need be stored. Note that although the set of lift values are discrete, the blocklength granularity that can be achieved is of one bit. The base graph and the lift values are designed such that the code for a given information blocklength K and rate r has good performance and the corresponding graph does not have bad loops.
The base graph description for each family along with its lift values are provided in the appendix. The description consists of a list of base check nodes together with their connected base variable nodes and a descriptor of the lifting values for the associated edge.  The first  variable nodes constitute the base information bits.   When  then only base variable nodes in the range [1: are used and those in the range [: are deleted.  The base parity variable nodes start at variable node  and if L base parity variables are used it is those in the range [:.  Shortening in the lifted is done by zero padding the information bits at the end of the set of information bits, so that the zero-padded bits reside in the last lifted column.  Puncturing of parity bits is done by puncturing at the end (largest possible base variable index) of the parity bit sequence.  Note that puncturing is limited to one lifted parity column except in the case of the highest rate family when the number of base parity bits is -2.
Codes for different operating rates
In order to support multiple rates, ranging from the low spectral efficiencies observed at cell edge up to the high spectral efficiencies seen at cell center, multiple code rates should to be specified for the new air interface. Contrary to LTE Turbo Codes [2], which puncture a low rate code in order to provide higher operating code rates, LDPC codes can be specified with a base graph per operating rate so as to reduce the computational overhead of correcting for an excessive amount of puncturing at the transmitter. 
In the algorithm 1 mentioned above, for a given  and  there can be multiple solutions within a family (above example) but also across families. Although the BLER vs EsN0 performance does not vary by much between different solutions for a given K and N, solutions could be chosen depending on the metric that needs to be satisfied. E.g., a solution could be chosen, amongst many, to have maximum lift value so that the hardware can be fully utilized and throughput can be increased at the cost of EsN0 or a solution could be chosen which has the best performance in terms of achievable EsN0 at the desired BLER. 
The range rate for NR has been decided to be from 1/5 to 8/9. From the above, it is observed that the design with three families can satisfy this rate requirement. One recommendation to use the three base graph code design would be as follows. To obtain codes for any rate in the desired range, we divide it into three parts: [8/9, 2/3), [2/3, 2/5), [2/5, 1/5]. For rates belonging to the range [8/9, 2/3) use codes obtained from the highest family. For rates belonging to the range [2/3, 2/5) use codes obtained from the middle family and for rates belonging to the range [2/5, 1/5) use codes obtained from the lowest family or the middle family depending on the difference in performance.
There are other rates available in each family, e.g., rate 10/11 is available for the highest family. However, not all blocklengths in the range 192 to 26,880 can be supported at this rate. 

Blocklength scaling
Larger frames for NR with large bandwidth scaling may warrant larger blocklengths e.g., K=8000 information bits or more, at highest rate, for performance gains. Single RB allocations may lead to smaller blocklengths e.g., down to N=384 code bits. Peak throughput data rate requirement should be met with the largest blocklength. Tradeoffs between encoding (size of microcode description) and decoding complexity (area of the decoder) and decoding latency and performance gains must be considered when designing the range and the granularity of code blocklengths. Maximum lift size should be selected so as to meet the throughput and latency requirement at peak rate. For a tight turn-around time requirement, the maximum code blocklength cannot be too large. Support for robust puncturing and shortening should also be considered for additional granularity in rate-matching. 
The proposed design based on three families is capable of generating a code for any given information blocklength K and code blocklength N, which are within the limits of the design as is detailed in Algorithm 1. Thus, the proposed design can achieve blocklength with single-bit granularity. The range of the blocklengths and rates achieved is described in the previous section. 
Description complexity
The description complexity of the proposed design can be calculated as follows. Each family has one base graph with a high-rate core and IR HARQ extension. On an average there are 500 edges and the highest family (which results in the largest extended base graph) has 186 columns and 156 rows. Hence for each edge one would require roughly 8 bits to index the row and 8 bits to index the column giving us 16 bits. As shown in the appendix to generate the set of clustered lifts  for , 21 bits per edge are required giving a total of 53 bits per edge. All together we get 3x500x53 = 79,500 bits to describe the code. 
IR HARQ support through code extension
IR HARQ would be necessary for energy-efficient data transmission. IR HARQ could be efficiently supported by starting from a higher-rate code and then extending to lower rates by adding extra parity-bits. Such an IR HARQ scheme allows us to have a uniformly close gap to capacity across a larger range of rates.  Figure 2 depicts an IR HARQ scheme in which the high-rate code corresponds to the smaller base graph embedded inside the larger low-rate base graph. In the 1st transmission, the decoder operates on the smaller high-rate base graph and if the decoding fails, extra degree one parity bits are transmitted which allows the decoder to operate on the bigger low-rate base graph and achieve successful decoding. Note that for the first transmission, the decoder operates on the smaller embedded base graph which is obtained by puncturing the IR HARQ parity-bits. Since the IR HARQ parity bits are of degree one, they, and their associated parity-check constraints, play no role in the decoding of the first transmission and are completely ignored by the decoder. This is unlike Turbo decoding at higher rates wherein energy must be spent in decoding the punctured bits in order to recover the first transmission. 
In the proposed design, the highest rate supported by each family is given by 8/9, 2/3, 2/5 respectively. The highest family can be extended finely from 8/9 to 1/6, the middle family can be extended finely from 2/3 to 1/6 and the lowest family can be extended from 2/5 to 1/12. 
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Observation 1: LDPC design with three families or equivalently three base graphs for obtaining all rates and all blocklengths needed for NR. Each family also consists of an extended graph for IR HARQ re-transmissions. Each family is a nested collection of base graph and has a set of clustered liftings.
Observation 2: For any given K and N, code is obtained by selecting a base graph from a family. This involves completely removing some information base columns from the largest base graph. Then shortening and puncturing by at most Z (lift value) is done on the lifted code. 
Observation 3: LDPC design with three families or equivalently three base graphs for obtaining all rates and all range of blocklengths needed for NR. One recommendation to use the three base graph design as is as follows. The rate-range could be divided in to three parts as mentioned above and three different families are used to code for each range. 
Observation 4: LDPC design provides single-bit granularity in blocklength with low description complexity while maintaining good performance.
Observation 5: LDPC design is capable of providing IR HARQ. Performance analysis done in [11] shows sizeable IR HARQ gains over chase combining. Proposed LDPC design is capable of fine IR HARQ extension (cf. [11]). 
Observation 6: The proposed LDPC design has performance gains over LTE Turbo (cf. simulation results in the appendix). At the lowest rate of 0.2 gains vary from 0.5 dB to 0.7 dB as blocklength increases. For intermediate rates 0.33, 0.4, 0.5 gains up to 0.25 dB are available. For highest rates 0.67, 0.75, 0.83, 0.89 gains vary from 0.15 dB to 0.3 dB. 

Encoding Structure and Procedure
All the three families have 802.11n-like encoding structure. For the highest and middle family, the encoding structure is exactly the same as 802.11n consisting of an accumulate chain of degree two and terminated with a degree three node. In 802.11n the permutations on the three edges connected to the degree three variable nodes is 1, 0, 1. I.e., the first edge has a cyclic shift of 1, the second edge has 0 and the third edge has a shift of 1. It has been observed that the 802.11n encoding structure can be limiting the performance for low rate codes. The failure is caused by small loops created by in the encoding structure of 802.11n which limits the performance of the rest of the code. In order to circumvent this problem, the encoding structure of the lowest family is designed to be slightly differently. The basic structure remains the same, however the cyclic shifts on the edges of the degree three variable node are not 1,0,1 as is done usually but some other numbers. This improves the performance of the lowest family codes. The change in the cyclic shift value does not materially increase the complexity of the encoding and all the underlying encoding machinery can be easily leveraged. All this is explained in more detail next.
Typically, the permutations used are from the cyclic group of integers modulo the lift value. As a result, quasi cyclic LDPC codes can be thought of as codes over the ring of binary polynomials modulo . In this interpretation, a binary polynomial,  may be associated to each variable node in the base graph.   The binary vector  corresponds to the bits associated to  corresponding variable nodes in the lifted graph.  A cyclic permutation by  of the binary vector is achieved by multiplying the corresponding binary polynomial by  where multiplication is taken modulo .   A degree  parity check in the base graph can be interpreted as a linear constraint on the neighboring binary polynomials  written as  where the values,  are the cyclic lifting values associated to the corresponding edges.  The parity check matrix H(x) in this representation resembles the base parity check matrix but entries associated to edges are monomials with the exponent representing the associated cyclic shift.
In this interpretation of the lifted quasi-cyclic codes the encoding problem typically reduces to solving a linear system

over the ring of polynomials modulo  where  is an invertible square  submatrix of the  parity-check matrix .  is the part of the codeword corresponding to the parity-bits and  is the syndrome obtained using the systematic bits. E.g., in 802.11n there is an accumulate chain of degree two parity-bits terminated using a degree three parity-bit. This is represented by the polynomial matrix shown below for an example with six base parity checks.


Encoding, ie., solving the above linear system,  can be done as follows.  First, multiply on the left with the vector  and note that [1 0 0 0 0 0] to obtain . This then determines and we can easily solve for the rest of C(x) using back substitution. The calculation of the syndrome D(x) is the performing of the multiplication N(x)I(x)= D(x) where N(x) is the submatrix of H(x) complementary to M(x) and I(x) is the vector of information polynomials. Thus, the encoding operations in 802.11n typically involve permutations and XOR of bit-vectors. It can be shown that similar operations are required for the new encoding structure and hence the complexity of encoding the new encoding structure is essentially the same as 802.11n encoding. The largest part of the encoding operation is the computation of D(x). For the  cluster in the set of clustered lifts,  for , the encoding structure for the lowest family is represented by the following matrix,

Where  for the  cluster. The encoding is now done in a similar fashion as 802.11n mentioned above. Indeed, if we left-multiply the matrix  by the vector [1 1 1 1 1 1] we get the vector [] where the polynomial . Thus, the syndrome equation given above now becomes . It is not hard to verify that for every cluster , the polynomial  is a monomial such as  or . Furthermore, we can write . Thus the inverse of the polynomial  is given by  , when the monomial is  ,hence the inversion of Q(x) can be done with a a few cyclic permutations and the bitwise XOR operation. Note that multiplying with a monomial  is equivalent to a cyclic shift (cyclic permutation) by  and adding monomials corresponds to the bitwise XOR operation. In particular multiplication by Q(x) or Q(x2) amounts to taking three cyclic shifts of a binary vector and XORing the shifted vectors together bitwise.
For the first cluster of {8,10,12,14} we use the encoding matrix

which is equivalent to the 802.11 encoding structure.

Observation 7: Use different permutations or cyclic shift values for the degree three parity node for better error-floor performance. 
Observation 8: Encoding with the new structure involves fixed number of cyclic shifts and XOR operation and is similar to the 802.11n. Thus the encoding complexity of the new structure is low.

High throughput and low latency considerations
Decoding algorithms for LDPC codes are inherently parallel in nature [4], and can allow high parallelization based on the structure of the code which would result in high throughput decoders. The code blocklength is the product of number of columns in the base graph and the lift size Z [5]. Hence, a decoding hardware capable of processing Z edges (corresponding to the lift Z) in one clock cycle would allow us to attain high decoding throughput. The level of parallelization provided by the specification should meet the requirements needed by NR and be forward compatible with implementation evolution of the air interface. Therefore, consideration should be taken to ensure a reasonable level of parallelization is implementable for initial NR deployments to meet high data throughput such 5Gbps and low latency requirements such as 15-30us of turnaround for self-contained acknowledgement of successfully decoded data. 
The proposed design is based on lifted LDPC codes and has inherent parallelism of the lift size. An advantage of the proposed design with three families is that for smaller blocklengths and lower code rates one can use the base graphs from the lowest families. This would give us larger lift values when compared to using base graphs from middle or the highest family. As a result, we would be able to have higher parallelization and resulting higher throughput.
Observation 9: Switch to lowest family for lower code rates and smaller blocklengths.
Proposal 1: LDPC codes as new coding scheme for NR that can address all the requirements of NR including performance, IR HARQ capability, high parallelism, low decoding latency, large range of rate and blocklengths, blocklength granularity and compact description.

Conclusions
The following observations lead to a proposal of LDPC for NR.
Observation 1: LDPC design with three families or equivalently three base graphs for obtaining all rates and all blocklengths needed for NR. Each family also consists of an extended graph for IR HARQ re-transmissions. Each family is a nested collection of base graph and has a set of clustered liftings.
Observation 2: For any given K and N, code is obtained by selecting a base graph from a family. This involves completely removing some information base columns from the largest base graph. Then shortening and puncturing by at most Z (lift value) is done on the lifted code. 
Observation 3: LDPC design with three families or equivalently three base graphs for obtaining all rates and all range of blocklengths needed for NR. One recommendation to use the three base graph design as is as follows. The rate-range could be divided in to three parts as mentioned above and three different families are used to code for each range. 
Observation 4: LDPC design provides single-bit granularity in blocklength with low description complexity while maintaining good performance.
Observation 5: LDPC design is capable of providing IR HARQ. Performance analysis done in [11] shows sizeable IR HARQ gains over chase combining. Proposed LDPC design is capable of fine IR HARQ extension (cf. [11]). 
Observation 6: The proposed LDPC design has performance gains over LTE Turbo (cf. simulation results in the appendix). At the lowest rate of 0.2 gains vary from 0.5 dB to 0.7 dB as blocklength increases. For intermediate rates 0.33, 0.4, 0.5 gains up to 0.25 dB are available. For highest rates 0.67, 0.75, 0.83, 0.89 gains vary from 0.15 dB to 0.3 dB. 
Observation 7: Use different permutations or cyclic shift values for the degree three parity node for better error-floor performance. 
Observation 8: Encoding with the new structure involves fixed number of cyclic shifts and XOR operation and is similar to the 802.11n. Thus the encoding complexity of the new structure is low.
Observation 9: Switch to lowest family for lower code rates and smaller blocklengths.
Proposal 1: LDPC codes as new coding scheme for NR that can address all the requirements of NR including performance, IR HARQ capability, high parallelism, low decoding latency, large range of rate and blocklengths, blocklength granularity and compact description.
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Appendix
Next section provides the parity-check matrices for the three families. In the last section, the entire eMBB scenario is simulated with the proposed LDPC design and the performance is compared against the LTE Turbo. 
Parity-check matrix structure
The parity-check for each family is described as follows. Each row is a check node in the base graph. Each pair in a row corresponds to the variable node index (to which the check node is connected) and a 21-bit (shown in hexadecimal) lifting information for that edge.
As noted in the text above, the set of clustered lifts is given by  for  .  We use a common lifting value for each element of the cluster.  For the jth cluster the lifting value for an edge is always in the range [0:2j+2-1] and thus applies directly to all Z values in the cluster. To obtain the value for the cyclic shift for each of the Z in the cluster we proceed as follows. Each edge in the base graph has an associated 21 bit descriptor which is given in the table below in hexadecimal. For  For the jth cluster we subselect j+2 bits from the 21 bit sequence to determine a j+2 bit integer that defines the lifting value. In general the j leftmost (MSBs) of the 21 bits descriptor comprise the j most significant bits of the lifting value.  The two least significant bits of the lifting value are the bits found in positions 2j and 2j-1 where the rightmost (LSB) is position 1 and the leftmost (MSB) is position 21.  More specifically, let  denote a 21 bit descriptor. Then to obtain the integer for a lift in  cluster where , we first take  bits from the left (or the start) of the 21-bit sequence, e.g.,  and concatenate that with . The bit sequence is then interpreted as a binary number and we thereby obtain the corresponding cyclic shift for that edge under the chosen lift value. E.g., if Z = 40, then this value belongs to the 3rd cluster and hence . Consider finding the lift value for the first entry in the lowest family (given below).  The 21 bit binary descriptor, suitably parsed, is given by 1100111 10 11 11 01 01 00 01. Since j=3 we use the first 3 bits from the left of the descriptor, which are 110, and concatenate them with the two bit pair from position 6 and 5 (as taken from the right), which is 01, giving us the bit sequence 11001 which interpreted as in integer gives 25.  The result would be the same for Z=32, Z=48, and Z=56. An example PCM [12] for the lowest family with lift Z = 32 is provided. As mentioned earlier, the same PCM is used for lift values Z = 40,48,56.

Lowest family

1:: (1,0x19EF51) (3,0x101861) (5,0x0EE10A) (7,0x0B992F) (12,0x0A0027) (13,0x000000) 
2:: (2,0x046C2B) (3,0x07826B) (6,0x0EDF19) (8,0x005169) (10,0x0AA991) (13,0x000000) (14,0x000000) 
3:: (2,0x150AB4) (4,0x129CBB) (5,0x16BE23) (6,0x17D3C5) (9,0x038A1F) (14,0x000000) (15,0x000000) 
4:: (1,0x04AE19) (4,0x11B465) (7,0x1F7AFD) (8,0x1D9DB4) (12,0x180000) (15,0x000000) (16,0x000000) 
5:: (1,0x18D8E4) (2,0x138EE9) (4,0x1BBDFC) (16,0x000000) (17,0x000000) 
6:: (1,0x179F5E) (2,0x1DF943) (3,0x0A28A9) (17,0x000000) (18,0x000000) 
7:: (1,0x00936C) (2,0x025587) (5,0x07E9DD) (18,0x000000) (19,0x000000) 
8:: (1,0x0B22EA) (2,0x0943FA) (6,0x18A562) (10,0x142584) (19,0x000000) (20,0x000000) 
9:: (1,0x1D8F6F) (2,0x162994) (7,0x10E457) (9,0x02BFE9) (10,0x06A590) (20,0x000000) (21,0x000000) 
10:: (1,0x094C81) (2,0x0140B0) (8,0x15823F) (9,0x0A78B0) (12,0x000003) (21,0x000000) 
11:: (1,0x1F936F) (2,0x00D967) (11,0x000000) 
12:: (1,0x05E4CB) (8,0x091A78) (11,0x0E7FCB) (12,0x1ADD87) (22,0x000000) 
13:: (1,0x037CEF) (2,0x0AFE8F) (7,0x03E3F4) (10,0x06A30E) (12,0x0CC316) (23,0x000000) 
14:: (2,0x0F8A7A) (3,0x1E207B) (9,0x193D08) (24,0x000000) 
15:: (1,0x03D2BB) (14,0x1E665D) (21,0x032BAB) (25,0x000000) 
16:: (1,0x0EDEB2) (4,0x1B990F) (8,0x065027) (26,0x000000) 
17:: (2,0x0E0C4A) (5,0x0390B6) (12,0x0541F4) (27,0x000000) 
18:: (1,0x1310F1) (6,0x117141) (12,0x1EA97E) (28,0x000000) 
19:: (2,0x1A2536) (13,0x067C1C) (21,0x17A737) (29,0x000000) 
20:: (1,0x18E8AD) (10,0x0DAE68) (17,0x076C76) (30,0x000000) 
21:: (1,0x14B55F) (2,0x03F2B8) (7,0x1D779E) (16,0x009C58) (31,0x000000) 
22:: (1,0x17CE60) (7,0x1A531E) (20,0x10000A) (32,0x000000) 
23:: (2,0x1FD545) (19,0x17FBD0) (33,0x000000) 
24:: (2,0x0CC37A) (7,0x090D41) (16,0x0769D8) (34,0x000000) 
25:: (1,0x11DBDF) (5,0x1D92F7) (12,0x18369F) (35,0x000000) 
26:: (1,0x124039) (4,0x1C941C) (12,0x0E65AE) (36,0x000000) 
27:: (2,0x153355) (6,0x158DE9) (37,0x000000) 
28:: (1,0x118F41) (7,0x08B21D) (14,0x0DF8F2) (38,0x000000) 
29:: (1,0x13F764) (7,0x155728) (10,0x00B37F) (13,0x043767) (39,0x000000) 
30:: (1,0x1EDBFE) (7,0x0C883D) (16,0x03E24D) (40,0x000000) 
31:: (1,0x0A72D9) (4,0x0CB483) (9,0x076AE6) (12,0x186F0A) (41,0x000000) 
32:: (1,0x039F11) (5,0x11AA75) (12,0x1C3B68) (42,0x000000) 
33:: (2,0x1B8987) (14,0x1C509E) (43,0x000000) 
34:: (1,0x17EA4B) (5,0x1A0A9B) (10,0x1082C4) (16,0x15B775) (44,0x000000) 
35:: (1,0x137652) (12,0x0F511C) (20,0x04BC6F) (45,0x000000) 
36:: (1,0x0EAC65) (4,0x13F704) (7,0x064766) (46,0x000000) 
37:: (1,0x160085) (4,0x11E9D0) (9,0x130DE3) (13,0x125406) (47,0x000000) 
38:: (2,0x04239E) (16,0x17D340) (48,0x000000) 
39:: (1,0x107780) (4,0x076C36) (8,0x0029B7) (49,0x000000) 
40:: (1,0x151F79) (4,0x019F79) (20,0x028DC9) (50,0x000000) 
41:: (1,0x020CAA) (4,0x0739EB) (5,0x1BE314) (51,0x000000) 
42:: (1,0x1C2883) (20,0x03D752) (52,0x000000) 
43:: (2,0x1EECDA) (10,0x09062B) (15,0x17F163) (53,0x000000) 
44:: (1,0x112DC0) (5,0x0D262F) (8,0x16DC2E) (54,0x000000) 
45:: (1,0x12E59E) (4,0x091B79) (13,0x061AE8) (55,0x000000) 
46:: (1,0x053865) (4,0x05531B) (8,0x0B87ED) (56,0x000000) 
47:: (1,0x025E42) (4,0x1BABFD) (13,0x056AD6) (57,0x000000) 
48:: (1,0x1D8E5C) (6,0x0B31ED) (58,0x000000) 
49:: (2,0x19809E) (3,0x19DAE3) (9,0x0E6CD8) (59,0x000000) 
50:: (1,0x08506E) (5,0x1D4DB8) (21,0x16FE5A) (60,0x000000) 
51:: (1,0x025E3D) (4,0x02F031) (8,0x16195E) (61,0x000000) 
52:: (1,0x0B7CEC) (14,0x148CD4) (62,0x000000) 
53:: (7,0x0E8138) (19,0x0761F2) (63,0x000000) 
54:: (1,0x18843E) (4,0x03FADA) (21,0x140EE0) (64,0x000000) 
55:: (1,0x1F9C8D) (4,0x12EBCE) (17,0x179402) (65,0x000000) 
56:: (1,0x15A267) (2,0x1F34F1) (6,0x0D07F4) (66,0x000000) 
57:: (1,0x1747F9) (3,0x142E86) (4,0x0876C3) (10,0x1CE55D) (67,0x000000) 
58:: (8,0x12B2E0) (9,0x0D4F0C) (68,0x000000) 
59:: (1,0x0B20EE) (2,0x0527B9) (18,0x12849D) (69,0x000000) 
60:: (5,0x045F31) (10,0x021585) (70,0x000000) 
61:: (2,0x0404AE) (18,0x045652) (71,0x000000) 
62:: (9,0x1688F3) (21,0x056308) (72,0x000000) 
63:: (12,0x0608A0) (15,0x06E348) (73,0x000000) 
64:: (2,0x1FF57D) (13,0x03104B) (74,0x000000) 
65:: (17,0x1266EC) (75,0x000000) 
66:: (1,0x0C8B48) (3,0x144828) (7,0x1B7B92) (76,0x000000) 
67:: (2,0x0373C0) (20,0x018CEE) (77,0x000000) 
68:: (3,0x1F2102) (78,0x000000) 
69:: (1,0x147070) (12,0x1BCDA5) (19,0x0E74AF) (79,0x000000) 
70:: (4,0x1D4DAE) (16,0x13ADC4) (80,0x000000) 
71:: (7,0x1D0642) (81,0x000000) 
72:: (6,0x0D5D7E) (12,0x02982A) (82,0x000000) 
73:: (10,0x0E2BF8) (19,0x11740F) (83,0x000000) 
74:: (13,0x15D856) (84,0x000000) 
75:: (12,0x005587) (18,0x0FEB62) (85,0x000000) 
76:: (4,0x18492E) (20,0x120F87) (86,0x000000) 
77:: (2,0x11E363) (6,0x1314D8) (87,0x000000) 
78:: (16,0x0D9E25) (88,0x000000) 
79:: (1,0x152BF0) (2,0x08FBEE) (14,0x0400AA) (89,0x000000) 
80:: (12,0x00FAC5) (14,0x091C7A) (90,0x000000) 
81:: (11,0x1702C0) (20,0x0CCE50) (91,0x000000) 
82:: (2,0x0DF69A) (6,0x0C0C91) (92,0x000000) 
83:: (1,0x1AFBA5) (2,0x0D628F) (15,0x115B31) (93,0x000000) 
84:: (9,0x152985) (20,0x1FBA1F) (94,0x000000) 
85:: (2,0x03C736) (12,0x13A9FB) (15,0x124035) (95,0x000000) 
86:: (4,0x15B772) (8,0x0E420D) (96,0x000000) 
87:: (1,0x178F5C) (6,0x102F46) (12,0x099BFA) (97,0x000000) 
88:: (12,0x17520A) (98,0x000000) 
89:: (11,0x092790) (15,0x1562F6) (99,0x000000) 
90:: (11,0x195268) (14,0x1282C0) (100,0x000000) 
91:: (11,0x1C4923) (18,0x1885B8) (101,0x000000) 
92:: (11,0x0D00F8) (21,0x016710) (102,0x000000) 
93:: (11,0x14D593) (15,0x0F512E) (103,0x000000) 
94:: (6,0x19971A) (10,0x052275) (104,0x000000) 
95:: (5,0x093AF5) (9,0x1BAE76) (105,0x000000) 
96:: (11,0x0F44FE) (18,0x10A521) (106,0x000000) 
97:: (4,0x1832F3) (8,0x01CF29) (107,0x000000) 
98:: (11,0x1AA99F) (15,0x119F1C) (108,0x000000) 
99:: (7,0x12F085) (9,0x0F061E) (109,0x000000) 
100:: (14,0x01C203) (110,0x000000) 
101:: (4,0x1CB242) (8,0x175752) (111,0x000000) 
102:: (4,0x03038F) (17,0x0DB774) (112,0x000000) 
103:: (11,0x0B01D8) (21,0x0B8D13) (113,0x000000) 
104:: (11,0x102921) (18,0x1FFAEC) (114,0x000000) 
105:: (2,0x1700D4) (3,0x0766B0) (115,0x000000) 
106:: (10,0x01C709) (13,0x102DCB) (116,0x000000) 
107:: (15,0x017A53) (117,0x000000) 
108:: (4,0x1C7C28) (19,0x1A84D2) (118,0x000000) 
109:: (21,0x1436BB) (119,0x000000) 
110:: (2,0x054276) (3,0x03C9C8) (8,0x0C588F) (120,0x000000) 
111:: (2,0x15B439) (17,0x18C150) (121,0x000000) 
112:: (11,0x0A1239) (18,0x077DE1) (122,0x000000) 
113:: (4,0x065039) (8,0x1198EF) (123,0x000000) 
114:: (3,0x1A27F7) (11,0x19D319) (124,0x000000)

Middle family

1:: (2,0x072E79) (3,0x1C1DA1) (4,0x0C1FB7) (5,0x140BAE) (6,0x10D269) (7,0x02CFF9) (8,0x1A9194) (9,0x1F9AB1) (19,0x1160D4) (22,0x001555) (23,0x000000) 
2:: (1,0x09E7D6) (10,0x043E61) (11,0x1B1864) (12,0x0DF236) (13,0x0B52BA) (14,0x0BC649) (15,0x0BDE57) (16,0x128F1A) (17,0x1BE5A4) (23,0x000000) (24,0x000000) 
3:: (1,0x10D5E9) (2,0x176656) (3,0x1A4577) (6,0x16E342) (13,0x147513) (16,0x0E4402) (19,0x1E102F) (20,0x0FE27F) (24,0x000000) (25,0x000000) 
4:: (1,0x1915F3) (2,0x11EA61) (3,0x07ECE2) (8,0x0E33C4) (9,0x01B9FF) (10,0x095A16) (11,0x157386) (17,0x17406B) (18,0x17C5BB) (22,0x000000) (25,0x000000) (26,0x000000) 
5:: (1,0x096873) (2,0x09E868) (4,0x131340) (6,0x1AB7F3) (7,0x1DE90C) (11,0x06636C) (12,0x1FCFEB) (15,0x013D9D) (20,0x16B4B2) (26,0x000000) (27,0x000000) 
6:: (1,0x12D34C) (2,0x002757) (4,0x03BDB5) (9,0x09495A) (13,0x1A0955) (14,0x04EED6) (18,0x0A54FE) (19,0x05F537) (27,0x000000) (28,0x000000) 
7:: (1,0x07845C) (2,0x15A7FC) (5,0x1DAC9F) (7,0x05B09F) (10,0x0610DC) (12,0x0A8E60) (17,0x0EC8B5) (28,0x000000) (29,0x000000) 
8:: (1,0x01932A) (2,0x014DFE) (5,0x1014C1) (8,0x09D592) (14,0x0EF693) (15,0x15A86B) (16,0x02ACE1) (18,0x1861E0) (20,0x0102D1) (22,0x001555) (29,0x000000) 
9:: (1,0x182DDB) (2,0x0C68D6) (21,0x000000) 
10:: (1,0x081512) (2,0x192715) (5,0x1C762A) (8,0x13362E) (20,0x114AD6) (21,0x04EA96) (22,0x1366A7) (30,0x000000) 
11:: (1,0x1C321F) (2,0x147EAA) (7,0x11E687) (14,0x0DAE19) (15,0x11B7AE) (17,0x102B52) (31,0x000000) 
12:: (1,0x0BB9D9) (8,0x15FA2F) (11,0x180EB0) (16,0x185093) (22,0x0125B7) (32,0x000000) 
13:: (1,0x06B1DC) (2,0x101D00) (4,0x1F6460) (9,0x188A9C) (15,0x0AFA88) (33,0x000000) 
14:: (2,0x1BE606) (3,0x0A7929) (5,0x19F2C5) (17,0x1735D5) (19,0x19AB30) (34,0x000000) 
15:: (1,0x11176F) (6,0x1A1DE5) (22,0x0C8B9C) (23,0x04DF09) (35,0x000000) 
16:: (1,0x13FF18) (2,0x1A32B8) (8,0x07ABB9) (9,0x0B564D) (10,0x0F925E) (15,0x013DBF) (36,0x000000) 
17:: (2,0x0E69E6) (9,0x171201) (19,0x17226B) (29,0x104E6D) (37,0x000000) 
18:: (1,0x0DFE5F) (12,0x1EF8CC) (14,0x113CFC) (15,0x1603F7) (38,0x000000) 
19:: (1,0x19F7D5) (8,0x04453C) (13,0x082FF5) (16,0x0E296B) (39,0x000000) 
20:: (2,0x0C53F1) (7,0x1099C3) (10,0x0AFE4E) (19,0x0D119F) (40,0x000000) 
21:: (1,0x1FCFC4) (4,0x08EF1F) (14,0x0810C8) (16,0x1094C3) (41,0x000000) 
22:: (1,0x080191) (11,0x1F6E69) (16,0x0D30AE) (22,0x0E304D) (42,0x000000) 
23:: (1,0x07FB06) (2,0x1EA2EF) (5,0x09831B) (8,0x1C31FA) (27,0x057F81) (43,0x000000) 
24:: (1,0x0ABB0E) (6,0x15BB7F) (14,0x124C1B) (15,0x1B6CC7) (18,0x16EB12) (44,0x000000) 
25:: (2,0x0C7527) (4,0x10A65A) (13,0x031F83) (45,0x000000) 
26:: (1,0x02FE67) (9,0x168D74) (12,0x19DA9D) (18,0x18703A) (46,0x000000) 
27:: (2,0x18F354) (5,0x158EFE) (8,0x076E38) (24,0x0E20D9) (47,0x000000) 
28:: (1,0x1A3314) (7,0x1A76CE) (27,0x131811) (48,0x000000) 
29:: (1,0x145100) (2,0x06C0AF) (15,0x0BDBF9) (22,0x100F96) (24,0x00A701) (49,0x000000) 
30:: (1,0x1A4608) (11,0x18879D) (15,0x06B1DE) (22,0x0BFA27) (50,0x000000) 
31:: (1,0x084240) (2,0x0E389E) (6,0x04B257) (11,0x019BE0) (51,0x000000) 
32:: (2,0x1E9C59) (8,0x18058B) (20,0x126DA5) (23,0x1D4455) (52,0x000000) 
33:: (2,0x0DEF45) (3,0x0F0FE3) (14,0x041F6F) (15,0x12A82C) (53,0x000000) 
34:: (1,0x14E1B5) (10,0x188016) (16,0x0797D0) (20,0x016F06) (54,0x000000) 
35:: (2,0x10EDC8) (6,0x1F580D) (15,0x0BB3F6) (24,0x120279) (55,0x000000) 
36:: (2,0x048DF0) (12,0x1CD98D) (14,0x175B82) (56,0x000000) 
37:: (1,0x009D18) (4,0x09608C) (13,0x068618) (15,0x086328) (17,0x1927A0) (57,0x000000) 
38:: (1,0x0E532E) (6,0x1D0770) (27,0x1B9B88) (58,0x000000) 
39:: (2,0x0682D6) (11,0x1D529F) (29,0x00FB47) (59,0x000000) 
40:: (1,0x15A945) (13,0x18025A) (20,0x039FD1) (24,0x1541F9) (60,0x000000) 
41:: (2,0x13B765) (3,0x0EE2BF) (5,0x151541) (61,0x000000) 
42:: (2,0x0A8F9A) (7,0x14F69F) (15,0x05CBF1) (22,0x0200D4) (62,0x000000) 
43:: (1,0x1D7A02) (19,0x1C8A3D) (22,0x0824F9) (23,0x1AD893) (63,0x000000) 
44:: (2,0x11FD07) (4,0x144390) (10,0x08AC41) (64,0x000000) 
45:: (1,0x19B6E7) (6,0x0F0142) (15,0x00044F) (29,0x0BFD7C) (65,0x000000) 
46:: (1,0x02C1AC) (12,0x15B039) (16,0x08E90C) (66,0x000000) 
47:: (1,0x08FDD8) (3,0x00300C) (8,0x024FA2) (15,0x05B9BE) (18,0x00FD36) (67,0x000000) 
48:: (2,0x01C676) (9,0x17F934) (11,0x1035B1) (68,0x000000) 
49:: (1,0x072072) (13,0x09BECC) (27,0x05EA88) (69,0x000000) 
50:: (2,0x1D9E61) (7,0x08405C) (24,0x05E879) (70,0x000000) 
51:: (1,0x0FDE83) (14,0x070458) (23,0x0F295A) (71,0x000000) 
52:: (6,0x1AA387) (17,0x1E7698) (29,0x0D92B2) (72,0x000000) 
53:: (2,0x13ABC4) (3,0x092037) (4,0x043A17) (73,0x000000) 
54:: (1,0x0B0983) (8,0x07AA3E) (10,0x146975) (74,0x000000) 
55:: (2,0x0DC143) (9,0x12E410) (12,0x0BA7B3) (75,0x000000) 
56:: (11,0x0B70E0) (18,0x1EB29D) (27,0x1C7B45) (76,0x000000) 
57:: (2,0x1AA650) (3,0x1B0FC8) (5,0x006429) (77,0x000000) 
58:: (22,0x119161) (23,0x1059BB) (78,0x000000) 
59:: (1,0x124BD3) (16,0x0E8A37) (24,0x0C2D0F) (79,0x000000) 
60:: (1,0x1E8BF8) (7,0x0707BA) (13,0x148907) (80,0x000000) 
61:: (2,0x110A1A) (15,0x179258) (25,0x1AFE89) (81,0x000000) 
62:: (1,0x081789) (4,0x167960) (5,0x0D9AE3) (82,0x000000) 
63:: (15,0x114430) (19,0x16ACF7) (25,0x1E91DE) (83,0x000000) 
64:: (9,0x037523) (14,0x0CB064) (84,0x000000) 
65:: (2,0x092F74) (8,0x1A24F1) (10,0x13AD45) (85,0x000000) 
66:: (2,0x051473) (12,0x0A4C8D) (16,0x0256AB) (86,0x000000) 
67:: (7,0x1BFE7C) (13,0x10109C) (87,0x000000) 
68:: (4,0x172255) (24,0x08E00F) (88,0x000000) 
69:: (3,0x0747E9) (5,0x1A83F4) (89,0x000000) 
70:: (1,0x19492F) (10,0x0564FB) (12,0x1F946A) (90,0x000000) 
71:: (2,0x164025) (15,0x1340C1) (26,0x0CD821) (91,0x000000) 
72:: (1,0x1910D7) (8,0x1DAF75) (29,0x0A6086) (92,0x000000) 
73:: (2,0x08DE19) (6,0x116C4B) (16,0x172FEC) (20,0x0A42E7) (93,0x000000) 
74:: (1,0x0C355D) (15,0x0727B7) (26,0x03CC45) (94,0x000000) 
75:: (2,0x0D1DDD) (14,0x1D8166) (29,0x07ADFC) (95,0x000000) 
76:: (2,0x1B1630) (8,0x1DC35C) (20,0x1F1FD1) (26,0x15FC62) (96,0x000000) 
77:: (16,0x1DCA1C) (18,0x0FE932) (22,0x103972) (97,0x000000) 
78:: (2,0x09D669) (8,0x19121C) (26,0x0A0C32) (98,0x000000) 
79:: (2,0x18342C) (14,0x0F5540) (27,0x02ACE7) (99,0x000000) 
80:: (1,0x0C8C48) (5,0x13B875) (26,0x1162C4) (100,0x000000) 
81:: (10,0x1C8850) (17,0x184534) (101,0x000000) 
82:: (14,0x0C48CB) (28,0x06B6E2) (102,0x000000) 
83:: (5,0x1765F5) (11,0x0766DD) (103,0x000000) 
84:: (8,0x0F9FAC) (9,0x103A5F) (104,0x000000) 
85:: (1,0x01CD09) (4,0x1EA2BF) (7,0x0EF41C) (105,0x000000) 
86:: (2,0x0A2E5E) (6,0x1245F4) (7,0x19AC64) (106,0x000000) 
87:: (12,0x156538) (18,0x0A9BAF) (107,0x000000) 
88:: (4,0x0AC89C) (29,0x090140) (108,0x000000) 
89:: (22,0x19B551) (24,0x000162) (109,0x000000) 
90:: (7,0x1AFB43) (26,0x0746ED) (110,0x000000) 
91:: (13,0x087E62) (17,0x06FB89) (111,0x000000) 
92:: (6,0x19C504) (27,0x0BF2D9) (112,0x000000) 
93:: (15,0x1CFFB7) (23,0x0E8517) (113,0x000000) 
94:: (3,0x06D38F) (5,0x026A03) (114,0x000000) 
95:: (11,0x13B3C9) (16,0x1CC906) (115,0x000000) 
96:: (9,0x0FF5AE) (14,0x15EF00) (116,0x000000) 
97:: (8,0x0FBA2C) (29,0x110B5C) (117,0x000000) 
98:: (1,0x0C9343) (15,0x0EAF24) (25,0x10342D) (118,0x000000) 
99:: (15,0x1E50FE) (25,0x19CF64) (119,0x000000) 
100:: (1,0x1055A7) (4,0x0D975C) (27,0x06854A) (120,0x000000) 
101:: (17,0x1F0351) (24,0x01EDCF) (121,0x000000) 
102:: (8,0x12CCBE) (28,0x1641BF) (122,0x000000) 
103:: (5,0x16AFF2) (22,0x0D6177) (123,0x000000) 
104:: (6,0x1B37C0) (16,0x142B2B) (124,0x000000) 
105:: (14,0x0BA81D) (26,0x1B5439) (125,0x000000) 
106:: (4,0x0F9934) (7,0x1D01C8) (126,0x000000)

Highest Family

1:: (2,0x0992A7) (3,0x141EB1) (4,0x1D7634) (5,0x09E018) (6,0x1E1D65) (7,0x14A86D) (8,0x0C191F) (9,0x18C574) (10,0x116C3B) (11,0x185435) (12,0x191DF0) (13,0x0A1E99) (14,0x116500) (15,0x1800A7) (16,0x0DBDC0) (25,0x146FF8) (26,0x01FFE4) (29,0x039296) (32,0x001555) (33,0x000000) 
2:: (1,0x12D505) (2,0x06D582) (5,0x0CD95E) (6,0x01AF79) (7,0x078C4B) (14,0x190501) (15,0x1A4B40) (19,0x0087ED) (20,0x0014D0) (21,0x0E2D40) (22,0x1DD351) (29,0x195F4F) (30,0x0AFDD8) (33,0x000000) (34,0x000000) 
3:: (1,0x1C48D7) (2,0x0B860F) (8,0x10800D) (9,0x092A0C) (10,0x19425D) (11,0x092472) (12,0x144B59) (17,0x0CB855) (18,0x14109A) (19,0x156257) (20,0x11B624) (21,0x00B08F) (22,0x100624) (23,0x1C1D1E) (24,0x071507) (26,0x046D87) (27,0x02CAC3) (28,0x0DF131) (30,0x11D3BD) (32,0x000000) (34,0x000000) (35,0x000000) 
4:: (1,0x09038F) (2,0x1A79DD) (3,0x1E2476) (4,0x12BC56) (5,0x1E3F30) (8,0x05E821) (9,0x060BCB) (13,0x1C6E04) (17,0x00E994) (18,0x1C1794) (20,0x106EC1) (23,0x0BA6DC) (27,0x00E0F8) (28,0x15BA4A) (35,0x000000) (36,0x000000) 
5:: (1,0x008275) (11,0x0ADDAC) (12,0x050FF9) (13,0x10DE8B) (14,0x041393) (15,0x150C7B) (16,0x094E29) (17,0x064FFE) (18,0x031645) (19,0x0A23C9) (24,0x03C512) (25,0x135AD1) (27,0x11921E) (29,0x10CAD6) (30,0x0F82CE) (36,0x000000) (37,0x000000) 
6:: (1,0x094974) (2,0x0E80F6) (3,0x1149E4) (4,0x130AC3) (6,0x09D4C2) (7,0x121827) (10,0x1541C5) (16,0x1B1915) (21,0x1021C9) (22,0x14288F) (23,0x119BE0) (24,0x08A4C4) (25,0x0E06B8) (26,0x0E48DA) (28,0x1E1645) (32,0x001555) (37,0x000000) 
7:: (1,0x098F66) (2,0x0D6602) (31,0x000000) 
8:: (1,0x170DD7) (2,0x1CE9AA) (10,0x08034C) (12,0x1AFCC9) (16,0x0597DF) (27,0x099A34) (31,0x06C14B) (32,0x00A946) (38,0x000000) 
9:: (2,0x02E7D9) (4,0x1DE87F) (8,0x18E353) (9,0x0B31D0) (10,0x15F372) (11,0x171322) (24,0x158D92) (30,0x098246) (39,0x000000) 
10:: (1,0x1A6E38) (2,0x0AC6D0) (3,0x142D4D) (4,0x01C0FB) (6,0x10166B) (7,0x100526) (23,0x16DE2C) (26,0x15F35C) (30,0x0B5818) (40,0x000000) 
11:: (1,0x128E2B) (2,0x156F36) (3,0x15583F) (11,0x165B70) (21,0x15F26A) (22,0x155D71) (24,0x11676D) (26,0x15CAE4) (41,0x000000) 
12:: (1,0x1CFD2C) (7,0x032704) (8,0x1183AC) (9,0x0D8A76) (17,0x10CA48) (29,0x0E7B5A) (30,0x00C53D) (32,0x03BF44) (42,0x000000) 
13:: (2,0x0B0DF2) (6,0x19074A) (14,0x089DF9) (16,0x10C15A) (23,0x0A7D39) (26,0x022754) (29,0x1377CA) (43,0x000000) 
14:: (1,0x0CE3C2) (11,0x0A5A07) (21,0x07BDE7) (22,0x0E8923) (25,0x14AE59) (30,0x17FB6F) (35,0x141088) (44,0x000000) 
15:: (2,0x1000AF) (4,0x1E391E) (5,0x0C6A3D) (10,0x1EA1AB) (24,0x17DFA6) (29,0x11341D) (45,0x000000) 
16:: (1,0x143B5D) (3,0x1BC616) (9,0x18ADB4) (12,0x130C87) (13,0x0FF55C) (26,0x131706) (46,0x000000) 
17:: (2,0x0E53E7) (8,0x00101C) (17,0x1967D1) (25,0x1F0277) (26,0x07D9F2) (32,0x0013DA) (47,0x000000) 
18:: (1,0x025B10) (2,0x1BF162) (7,0x0E020D) (11,0x11F7AA) (12,0x0806C3) (23,0x0EC02F) (33,0x0234B8) (48,0x000000) 
19:: (1,0x0A73A0) (2,0x13084E) (5,0x12A37C) (12,0x06098B) (22,0x1FEFAF) (33,0x10E3C6) (49,0x000000) 
20:: (1,0x1F491A) (7,0x181800) (10,0x130C71) (18,0x0FD824) (26,0x0EAE1D) (50,0x000000) 
21:: (2,0x1C64D0) (11,0x197936) (14,0x0F6625) (24,0x0FC561) (28,0x04A7BE) (33,0x008597) (51,0x000000) 
22:: (1,0x0E382F) (2,0x1AAEA6) (3,0x196891) (4,0x0EA8A1) (20,0x09EDD6) (24,0x111857) (52,0x000000) 
23:: (1,0x066C3A) (4,0x0C9D9E) (6,0x03134A) (20,0x0412A8) (30,0x1B5CE0) (53,0x000000) 
24:: (2,0x095BD9) (20,0x15C6CA) (21,0x0EA93B) (29,0x137A78) (35,0x1555F1) (54,0x000000) 
25:: (1,0x0A922E) (3,0x11B3FB) (11,0x066482) (13,0x0AFFC6) (23,0x0A9848) (55,0x000000) 
26:: (2,0x1322B9) (18,0x1DEFFD) (22,0x10E9E9) (23,0x18351A) (24,0x14B5D7) (56,0x000000) 
27:: (1,0x190DB2) (3,0x1BBCD0) (7,0x0A5590) (29,0x1D5976) (34,0x09F52B) (57,0x000000) 
28:: (2,0x15D374) (13,0x056E98) (16,0x0F32FF) (22,0x0CE518) (28,0x03388D) (58,0x000000) 
29:: (1,0x18204A) (12,0x158725) (23,0x19642F) (24,0x1241F1) (34,0x1D19C1) (59,0x000000) 
30:: (2,0x0AE458) (9,0x15141D) (11,0x064666) (34,0x035479) (60,0x000000) 
31:: (1,0x058ADC) (5,0x0C8576) (12,0x190C45) (18,0x0DBFF7) (27,0x0BEFAD) (61,0x000000) 
32:: (2,0x07E14C) (33,0x001CA9) (34,0x015357) (35,0x0AFBEC) (62,0x000000) 
33:: (1,0x1174EF) (13,0x1276F2) (14,0x02CD38) (23,0x0977E1) (24,0x1086F0) (63,0x000000) 
34:: (2,0x122DDE) (8,0x1248AD) (20,0x139579) (26,0x02EE41) (64,0x000000) 
35:: (1,0x0EF33F) (3,0x042B79) (7,0x0A174F) (19,0x11E51A) (23,0x1D32B6) (24,0x070A01) (65,0x000000) 
36:: (1,0x0124E0) (3,0x0979CE) (4,0x1692CE) (6,0x128C21) (66,0x000000) 
37:: (1,0x0FABFF) (11,0x1CAD33) (13,0x144AE5) (32,0x0B12DC) (67,0x000000) 
38:: (2,0x0BF43B) (7,0x08D80D) (19,0x0D7B2B) (23,0x13B77D) (24,0x1214FF) (68,0x000000) 
39:: (1,0x19B795) (9,0x0B7B84) (10,0x14827B) (69,0x000000) 
40:: (2,0x07B508) (7,0x12D338) (19,0x0D7429) (21,0x1DD134) (70,0x000000) 
41:: (2,0x074046) (14,0x11B618) (28,0x0CE985) (33,0x142E61) (71,0x000000) 
42:: (1,0x075C8C) (17,0x0FF883) (22,0x09113E) (24,0x133F52) (72,0x000000) 
43:: (1,0x0CF001) (5,0x181010) (19,0x07C076) (23,0x186C63) (24,0x062B48) (25,0x0820CA) (73,0x000000) 
44:: (2,0x0C5321) (16,0x03C651) (19,0x181C23) (74,0x000000) 
45:: (1,0x0A04B0) (5,0x03BB80) (11,0x0AC992) (17,0x101A13) (75,0x000000) 
46:: (1,0x061A21) (12,0x0DFB4A) (18,0x108ADA) (19,0x0FE7F3) (76,0x000000) 
47:: (1,0x182952) (13,0x0AE15B) (23,0x152B98) (32,0x0302A8) (77,0x000000) 
48:: (2,0x0550BD) (18,0x1B20DE) (30,0x06494E) (35,0x03DF43) (78,0x000000) 
49:: (8,0x0D56F9) (21,0x1C0981) (24,0x102782) (27,0x04D6E9) (79,0x000000) 
50:: (1,0x002950) (17,0x0F519B) (19,0x1AE40F) (34,0x13D420) (80,0x000000) 
51:: (1,0x02083B) (6,0x00722D) (9,0x17F77F) (81,0x000000) 
52:: (14,0x018220) (20,0x1267C8) (23,0x18FD18) (82,0x000000) 
53:: (2,0x12BD15) (5,0x0F5900) (19,0x1596D8) (35,0x067093) (83,0x000000) 
54:: (2,0x17A48C) (32,0x1BE3B0) (34,0x00751C) (84,0x000000) 
55:: (1,0x09F150) (2,0x09FB8C) (3,0x005C77) (7,0x0C1C65) (36,0x083948) (85,0x000000) 
56:: (1,0x0B1DED) (4,0x0681C3) (22,0x183C40) (29,0x03EA1C) (86,0x000000) 
57:: (1,0x0C0820) (10,0x17589C) (11,0x198AB2) (16,0x0D5EBA) (87,0x000000) 
58:: (2,0x0BE4F5) (8,0x157D90) (12,0x1782F7) (28,0x13D9C1) (88,0x000000) 
59:: (1,0x1C80C7) (3,0x0B2549) (7,0x02125E) (36,0x05E738) (89,0x000000) 
60:: (1,0x1597A5) (5,0x1FABA0) (6,0x1E0ECE) (24,0x1855EF) (90,0x000000) 
61:: (13,0x16297C) (17,0x0AA6ED) (25,0x0F3155) (91,0x000000) 
62:: (1,0x0469B9) (10,0x0272A1) (33,0x1F824D) (92,0x000000) 
63:: (1,0x0BC456) (2,0x029A83) (4,0x057367) (7,0x123365) (36,0x089EE8) (93,0x000000) 
64:: (1,0x112DBF) (2,0x0BE1D2) (16,0x1554FC) (21,0x1EDC4B) (94,0x000000) 
65:: (2,0x1AC642) (6,0x0ECDBD) (7,0x033BCC) (36,0x141E30) (95,0x000000) 
66:: (2,0x198C14) (5,0x1E27D1) (14,0x162DFC) (96,0x000000) 
67:: (18,0x181022) (26,0x0D420E) (32,0x12F748) (97,0x000000) 
68:: (21,0x18339C) (28,0x1B13D2) (36,0x0E5C7D) (98,0x000000) 
69:: (1,0x05DB5D) (9,0x023143) (22,0x17CB49) (99,0x000000) 
70:: (16,0x14345E) (28,0x0FFEEB) (35,0x151C9C) (100,0x000000) 
71:: (12,0x01387E) (20,0x1E5DD3) (27,0x0287D9) (101,0x000000) 
72:: (4,0x1A1D4A) (33,0x159CF3) (102,0x000000) 
73:: (1,0x0626CE) (7,0x12FA43) (15,0x087306) (24,0x1721E8) (103,0x000000) 
74:: (6,0x0DBB4B) (10,0x1A0630) (104,0x000000) 
75:: (11,0x11B8FD) (17,0x08C2CB) (25,0x00F5B9) (105,0x000000) 
76:: (7,0x010274) (15,0x084A34) (106,0x000000) 
77:: (3,0x1AC430) (14,0x0F021E) (107,0x000000) 
78:: (8,0x15C930) (22,0x0A8494) (108,0x000000) 
79:: (5,0x1009C8) (9,0x05BA6E) (109,0x000000) 
80:: (32,0x0CEE24) (34,0x1285E1) (110,0x000000) 
81:: (16,0x0CEC9C) (19,0x039FCB) (111,0x000000) 
82:: (15,0x0A5627) (23,0x04EF27) (26,0x10E043) (112,0x000000) 
83:: (6,0x11A128) (21,0x172B92) (113,0x000000) 
84:: (13,0x0AE967) (18,0x013001) (114,0x000000) 
85:: (4,0x0A13E3) (35,0x1460A0) (115,0x000000) 
86:: (12,0x1F2058) (14,0x03DBA8) (116,0x000000) 
87:: (10,0x1F6781) (36,0x167254) (117,0x000000) 
88:: (17,0x0F0E22) (20,0x086590) (118,0x000000) 
89:: (11,0x0FCB2F) (33,0x0DFA37) (119,0x000000) 
90:: (3,0x1303DD) (8,0x158712) (30,0x16B8B9) (120,0x000000) 
91:: (24,0x1288C0) (37,0x0C0224) (121,0x000000) 
92:: (5,0x060A20) (22,0x10E0EE) (122,0x000000) 
93:: (9,0x1FAA73) (16,0x0A3C09) (123,0x000000) 
94:: (21,0x156AB4) (29,0x0B40BC) (34,0x025A3E) (124,0x000000) 
95:: (23,0x1AE2EA) (25,0x0114DB) (32,0x03D05D) (125,0x000000) 
96:: (7,0x0F6382) (15,0x0D9C4D) (126,0x000000) 
97:: (24,0x076657) (37,0x0CBA52) (127,0x000000) 
98:: (6,0x0172D7) (13,0x1AAD76) (128,0x000000) 
99:: (4,0x02AB5D) (19,0x115B90) (30,0x1D9D7B) (129,0x000000) 
100:: (12,0x0BC13E) (18,0x1264A1) (29,0x118682) (130,0x000000) 
101:: (10,0x0525FB) (28,0x134D18) (35,0x0885C1) (131,0x000000) 
102:: (14,0x11648F) (17,0x06A878) (28,0x1DFD17) (132,0x000000) 
103:: (11,0x08524B) (20,0x1C7580) (133,0x000000) 
104:: (3,0x18FC35) (25,0x0A7A64) (36,0x14F0F2) (134,0x000000) 
105:: (22,0x03E2C9) (23,0x08F754) (37,0x0839D1) (135,0x000000) 
106:: (5,0x1B9B25) (33,0x1EE69A) (136,0x000000) 
107:: (8,0x1B6AB5) (22,0x181806) (137,0x000000) 
108:: (7,0x127BFB) (15,0x1D013C) (21,0x0CBD63) (138,0x000000) 
109:: (9,0x048679) (16,0x100252) (139,0x000000) 
110:: (6,0x1CC48E) (24,0x03CBB4) (32,0x0B8F93) (140,0x000000) 
111:: (4,0x0C8A27) (19,0x0A46C3) (27,0x076A39) (141,0x000000) 
112:: (7,0x10D012) (23,0x17E8B7) (37,0x135CFE) (142,0x000000) 
113:: (12,0x0469A7) (13,0x03B6E3) (143,0x000000) 
114:: (21,0x04027B) (34,0x09F1DE) (144,0x000000) 
115:: (10,0x12DC5D) (18,0x01B6A2) (145,0x000000) 
116:: (3,0x12C752) (15,0x173BBD) (23,0x0CB18A) (146,0x000000) 
117:: (11,0x148CAA) (35,0x0B13C7) (147,0x000000) 
118:: (14,0x14F984) (24,0x14072E) (32,0x16F43C) (148,0x000000) 
119:: (6,0x1BD1A5) (7,0x0C7F3F) (20,0x17D4D2) (149,0x000000) 
120:: (2,0x090B6B) (3,0x1253EF) (37,0x0D9F72) (150,0x000000) 
121:: (2,0x0716FE) (5,0x08401D) (15,0x12DBCB) (23,0x0453A2) (151,0x000000) 
122:: (17,0x06022F) (22,0x191BCF) (27,0x12FFD8) (152,0x000000) 
123:: (7,0x1225F7) (16,0x01F10C) (36,0x18E87C) (153,0x000000) 
124:: (6,0x15F333) (8,0x1B190E) (154,0x000000) 
125:: (5,0x1F8B34) (15,0x1A7BF1) (24,0x1591C2) (155,0x000000) 
126:: (2,0x0CCDAE) (4,0x1C09B4) (33,0x13E99A) (156,0x000000) 
127:: (3,0x10B8F1) (23,0x096C67) (37,0x1AAAE1) (157,0x000000) 
128:: (2,0x0E47ED) (9,0x083541) (32,0x03DFB6) (158,0x000000) 
129:: (10,0x0C25C8) (20,0x0AF090) (26,0x038BB2) (159,0x000000) 
130:: (14,0x1C912C) (19,0x114391) (160,0x000000) 
131:: (3,0x0284B7) (21,0x0E3E61) (37,0x05F4BD) (161,0x000000) 
132:: (11,0x0C9839) (13,0x1CE3F6) (24,0x17199D) (162,0x000000) 
133:: (5,0x0D92FC) (15,0x110105) (29,0x128AAB) (163,0x000000) 
134:: (16,0x0ADDEB) (24,0x07E7DE) (34,0x0B5480) (164,0x000000) 
135:: (12,0x13EEC9) (23,0x1CD048) (36,0x0E5E61) (165,0x000000) 
136:: (2,0x060120) (9,0x0DF31B) (32,0x0607A2) (166,0x000000) 
137:: (4,0x1270CB) (18,0x0A90E8) (23,0x0903FF) (167,0x000000) 
138:: (22,0x0A051A) (27,0x09AAFF) (33,0x04FF5E) (168,0x000000) 
139:: (7,0x0ECA8E) (21,0x1E101D) (35,0x01BEDF) (169,0x000000) 
140:: (1,0x020045) (13,0x126331) (16,0x0DEB36) (170,0x000000) 
141:: (12,0x04B87E) (26,0x106C24) (37,0x1F9623) (171,0x000000) 
142:: (18,0x1A2F22) (24,0x0F0425) (36,0x038737) (172,0x000000) 
143:: (7,0x06E903) (9,0x1A2864) (17,0x181B4C) (173,0x000000) 
144:: (2,0x16FBA0) (11,0x1FDA4D) (34,0x154436) (174,0x000000) 
145:: (4,0x044A0E) (8,0x0318E4) (23,0x087C5C) (175,0x000000) 
146:: (20,0x190DF6) (30,0x1188C5) (32,0x127BF7) (176,0x000000) 
147:: (1,0x148CA3) (14,0x0DB59B) (19,0x1B2219) (177,0x000000) 
148:: (10,0x19F890) (13,0x0344F2) (25,0x158792) (178,0x000000) 
149:: (21,0x01730E) (35,0x12DBA5) (179,0x000000) 
150:: (6,0x1578B6) (15,0x0A188B) (180,0x000000) 
151:: (17,0x12A013) (36,0x09030A) (181,0x000000) 
152:: (16,0x170C68) (18,0x0E68D9) (30,0x094CAB) (182,0x000000) 
153:: (3,0x048CC5) (8,0x1461E9) (27,0x0081A9) (183,0x000000) 
154:: (9,0x13DEFD) (11,0x08C024) (184,0x000000) 
155:: (19,0x1CE95F) (34,0x17A78B) (185,0x000000) 
156:: (5,0x1672F6) (26,0x185658) (37,0x019F33) (186,0x000000) 
157:: (4,0x06E38D) (25,0x14246F) (33,0x0C7AF1) (187,0x000000) 
158:: (12,0x14B49F) (14,0x1F30F2) (188,0x000000)


Performance results and analysis
In this section the simulations results for the eMBB scenario are provided along with their comparison with LTE Turbo code. The eMBB simulation set-up is provided in the table below. 



	Channel*
	AWGN

	Modulation
	QPSK, 64 QAM

	Coding Scheme
	  Turbo
	LDPC

	Code rate 
	1/5, 1/3, 2/5, 1/2, 2/3, 3/4, 5/6, 8/9

	Decoding algorithm
	log-MAP (15 half-iterations)
	SP (flooding; max_iter = 50)

	Info. block length (bits w/o CRC)
	400, 1000, 2000, 4000, 6000, 8000 




As mentioned previously, for a given K and N there could be multiple solutions given by the proposed three family design. In the plots only the code with the best performance is depicted. It is noted that the performance variation amongst different solutions is not much especially at the higher rates (see [11] for some results). 

The LTE Turbo curves are in magenta and the proposed LDPC curves are in grey. Also provided in the legend are the codes used to generate these curves. The notation is as follows: Ckb_nb_K_N_ZX, where kb equals maximum base information nodes of the family to which the code belongs to, nb equals the number of core base parity-bits minus the 2 punctured nodes and K and N correspond to the given information and code blocklength, respectively. Z denotes the lifting and X equals the value used to obtain the given K from the chosen base graph. There might be shortening and/or puncturing of codebits (up to X bits) which are not specified for brevity but can be determined from the algorithm given above in section 3.1.

eMBB 4-QAM (Magenta = LTE Turbo; Grey = Proposed LDPC code)
[image: ][image: ][image: ][image: ][image: ][image: ]


eMBB 64-QAM (Magenta = LTE Turbo; Grey = Proposed LDPC code)
[image: ] [image: ] [image: ] [image: ] [image: ] [image: ]
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