3GPP TSG RAN WG1 Meeting #85bis		R1-165454
Nanjing, China, 23rd - 27th May 2016
Agenda Item: 7.1.5.1
Source: MediaTek Inc.
Title: 	Discussion on Polar Code Design and Performance
Document for: Discussion

1. [bookmark: _GoBack]Introduction
	Polar code is proved to be a capacity achieving code with systematic and low-complexity encoding [1]. Together with efficient and effective decoding algorithms, e.g., successive cancellation (SC) [1] and CRC-aided list-decoding algorithm [2], Polar code is regarded as one competitive candidate for NR. However, regarding the link adaptation demand for mobile communications, efficient and effective rate matching design is critical to Polar codes for NR. Specifically, we have
Proposal 1: Polar codes for NR should have efficient and effective rate matching design
By efficient rate matching, we propose to consider the design without online good bit estimation after output bit puncturing. Then, we will review and compare two competitive rate matching designs for Polar codes, i.e., the bit-reversal puncturing [3] and the compound Polar code puncturing [4]. Observing that the designs can perform poorly in some cases, a simple yet effective design is also proposed. Performance results are provided to show the limitations of existing designs and the feasibility of an effective rate matching scheme without online good bit estimation post puncturing.
This contribution is organized as follows. In Section 2, Polar code encoding and characteristics are introduced. In Section 3, rate matching designs are reviewed and investigated. Performance comparisons are provided in Section 4, where performances of turbo code, TBCC, and Polar code for small data sizes will be compared to show that Polar code is superior for such data/control channel applications. Finally, Section 5 summarizes the contribution with additional comment on HARQ-IR support.

2. Polar Code Encoding and Characteristics
A size-N Polar code can be constructed recursively. Starting from the 2-by-2 building block below, where y1 = u1 ⊕ u2, and y2 = u2, one can first observe an upper interference channel and a lower enhanced channel that can exploit both y1 and y2 when u1 is known. A simple channel polarization can thus be enforced.
[image:]
Expanding to a larger size of 2n, one can connect a left-stage of 2k size-2n-k Polar codes, 0 < k < n, to a right stage of 2n-k size-2k Polar codes by the following rule: i-th output bit of j-th Polar code in the left stage will connect to j-th input bit of i-th Polar code in the right stage. Below are some example illustrations:
· (2n, 2k) = (4, 2)
[image:]
· (2n, 2k) = (8, 2) in the left, and (2n, 2k) = (8, 4) in the right
[image:] [image:]
Note that, despite of different size configurations in the left and right stages, one can always have bit-reversal mapping between the input bit index and its directly connected output bit index. By direct connection, we mean having a path that won’t diverge from a horizontal edge in each 2-by-2 building block.
With the recursive polarization operations, some useful observations can be made:
· Binary presentation of an output bit index shows the trace of interference channels and enhanced channels along the direct path to the connected input bit: Specifically, MSB denotes and the leftest building block and LSB denote the rightest one. The value of 0 represents an interference channel and 1 denotes an enhanced channel.
· Input bit index value relates to the quality rank to its directly connected path; smaller value means worse path quality: If encountering an interference channel in a righter block suffers larger loss than encountering one in a lefter block, bit-reversal value of the output bit index will relate to the quality of the path directly connect to it. Since the index mapping of directly connected input and output bits follow bit-reversal rule, input bit index can be used for ranking the path quality. When deciding which output bits to puncture, this observation can be useful.
	To complete the encoding process of a (N, K) Polar code, where N = 2n is the output bit length and K is a targeted information bit length (including CRC), it requires to select the best K input bit indices. With the scheme in [5], efficient estimation on input bit mutual information (MI) can be carried out for the given value of N and a targeted operating SNR. The MI value can be used for good bit section. In next Section, we will discuss how to accommodate variable K and adapting the output bit length for a given code rate.

3. Rate Matching Design
1
2
3
Accommodating Variable Input Bit Length K
Denote the set of bit indices with MI above a target threshold Γ for a given SNR to be I(SNR, Γ). Then, it can be observed that I(SNR1, Γ) will be a subset of I(SNR2, Γ) if SNR1 < SNR2. Therefore, for a given Polar code size N, one can obtain a sorted list of input bit indices according to the order a bit index is earlier to be selected when SNR become larger. Then, accommodating variable input bit length can be done by choosing the first K indices from the list, and the NodeB and UE can record only the lists of output bit length of interest.
Note that puncturing the output bits will impact the quality of the input bits. In [6], frozen effect to the input bit of direct connection is identified. There is also implicit impact to other input bits due to change of channel polarization. To ensure optimal performance post puncturing, re-estimation of input bit quality and re-selection of good bits is required [3]. Since the quality estimation has complexity of O(N．log2N), it will contribute extra overhead to Polar code encoding and decoding. Waiting the estimation to be done is not desirable for timing critical applications. For those applications one needs to decode various hypothesis configurations, e.g., control channel blind decoding, such online good bit estimation shall be eliminated.
Proposal 2: Efficient Polar code rate matching design shall not require online good bit estimation (via, e.g., density evolution or Gaussian approximation)
In the following investigation to Polar code rate matching designs, we assume no online good bit estimation. Specifically, a list of sorted input bit indices is first obtained offline with input bit quality estimation for a given mother code output length of N = 2n. Then, for various puncturing settings, we only pick out the best K unfrozen bit indices for input loading. Note that the input bits directly connected to a punctured output bit will be marked as frozen according to [6].
Adapting Output Bit Length N – Prior Arts
In [3], simple bit-reversal puncturing is proposed for Polar codes. Illustrating the design in the previous encoding diagram indicates a sequential puncturing on output bits according to ascending index order:
[image:]
It can be observed that the better-quality path connecting to a larger input bit index can be punctured with low to medium puncture ratio. In case of low SNR and low code rate where few bottom input bits are of good quality, the bit-reversal puncturing may cause critical degradation to the good bits and thus suffer performance loss.
The compound Polar code puncturing [4] is an alternative scheme that performs distributive puncturing in each of the output-stage Polar codes. The output-stage Polar code applies optimized puncturing sequence via offline search. Regarding the bit-reversal index mapping between input and output, the design can prioritize to remove the worse paths connecting to input bits of smaller index values, as illustrated below with output stage Polar code of size 4. In [4], output-stage Polar code size is chosen to 32. However, degradation may still be expected for the cases with high puncturing ratio and high code rate since part of the good input bits may suffer unexpected puncturing loss due to the limited freedom in output-stage Polar code puncturing.
[image:]
Adapting Output Bit Length N – Proposed Design
In this subsection, a new design is proposed to avoid early degradation to good input bits with bit-reversal puncturing and to eliminate the freedom limitation with compound Polar code puncturing. Some notions are required before the detailed steps.
Let C denote a targeted code rate, and set N = 2n ≧ K/C. Since Polar code decoding complexity is related to
N．log2N, we assume n to be the smallest exponent. Then the mother code rate before output bit puncturing is K/N ≦ C. To match the target code rate, let N’ = ceil(K/C) be the corresponding output bit length, and N-N’ is the targeted number of output bits to be punctured. Further factor N-N’ into 2q + p, with q the largest integer such that 0 ≦ p ≦ 2q – 1. Then the new design involves the following 3 steps:
Step 1:
For first 2q bits, puncture the output bit indices directly connected to the input bits with indices in A = {0, … 2q - 1}
Step 2:
If mother code rate (K/N) <=1/4 and puncturing ratio (N-N’)/N > 1/4, puncturing the output bit indices directly connected to the input bits with indices in B = {2q + (0, …, p/2 - 1)} ∪ {2n-1 + (0, …, p/2 - 1)}.
Otherwise, set B = {2q + q-bit bit reversal of 0, …, (p-1)} for the output bit puncturing
Step 3:
Mark input bits in A ∪ B as frozen bits and skip their indices for input bit loading.
Note that the above design is one example, and there can be more sophistic designs that can achieve good performance without online good bit estimation.

4. Performance Comparison
4
Practical Rate Matching Performance
In this subsection, performance of the rate matching designs introduced in Section 3 will be provided and compared. For efficient simulations, we first consider K = 100 + 16 where 16 is because of the application of 16-bit CRC for CRC-aided list-decoding. For the decoding list size, we set a moderate size of 8 since a large list size may be inapplicable to timing critical scenarios or control channel settings. The modulation utilized is QPSK for all simulations. Below please check the performance curves with bit-reversal puncturing in green color and compound Polar code puncturing in red color. For code rates ranging from 1/2 to 3/4, both schemes achieve comparable performance.
[image:]
However, for low code rates, bit-reversal puncturing becomes much inferior while compound Polar code puncturing suffers certain loss for high code rate cases (with ≧40% puncturing ratio). Restricting no online good bit estimation thus poses certain challenge to existing rate matching designs.
[image:][image:]
	The new proposed design is also simulated and added as blue curves in the following figures. It can be checked that the large performance degradations with existing rate matching designs can be resolved with the proposed rate matching design.
[image:]
[image:][image:]
The following statements can thus be made:
Observation 1: Effective rate matching design without online good bit estimation post puncturing is feasible.
Proposal 3: Polar codes for NR shall adopt rate matching design without online good bit estimation
Performance Comparison with Other NR Coding Candidates:
In this subsection, we compare Polar code performance with other NR coding candidates, particularly turbo code and TBCC. Since the utilized CRC sizes can be different for different applications, i.e., 24 bits for turbo code in LTE PDSCH and 16 bits for TBCC in LTE PDCCH, we will set K =(information bit length + CRC size) and the output bit length to be N’ = ceil(K/C). Therefore CRC overhead is excluded for fair performance comparisons.
	First, we compare the performance of Turbo, TBCC, and Polar code at a setting with information size around 100 and code rate ranging from 1/3 to 5/6. ULLRC and control channel are possible applications with such setting. For turbo decoder, 10 full iterations are utilized. Non-list Viterbi algorithm is applied to TBCC decoding, and CRC-aided SC decoding with a moderate list size of 8 is exploited in Polar decoding. In the following, turbo performance is in red, TBCC one is in green, and Polar one is in blue. As can be observed in the figure, turbo code performs better than TBCC at its mother code rate of 1/3 by virtue of the capacity approaching code structure, but TBCC can outperform turbo code at high code rate by eliminating the tailing bit overhead. Nevertheless, Polar code with a moderate list size of 8 still achieves the best performance among the candidate codes.
[image:]
For further comparison with a smaller information bit length of 40, we further compare Polar and TBCC with code rates 1/12, 1/6, 1/3. Similarly, TBCC performance is in green color, and Polar curves are blue. It is interesting to observe that Polar code design can achieve a larger performance gain over TBCC for lower code rates since lower code rate is not realized by simple repetition as TBCC.
[image:]
By the above observation, the following proposal is made:
Observation 2: Polar codes for small data size can outperform turbo code by eliminating the tailing bit overhead and outperform TBCC by the better capacity approaching coding structure.
Proposal 4: Polar codes can be utilized for ULLRC or control channel applications of NR.

5. Summary
In this contribution, we investigated the rate matching designs for Polar codes and compared the performance with turbo and TBCC. The following are identified:
Proposal 1: Polar codes for NR should have efficient and effective rate matching design
Proposal 2: Efficient Polar code rate matching design shall not require online good bit estimation (via, e.g., density evolution or Gaussian approximation)
Observation 1: Effective rate matching design without online good bit estimation post puncturing is feasible.
Proposal 3: Polar codes for NR shall adopt rate matching design without online good bit estimation
Observation 2: Polar codes for small data size can outperform turbo code by eliminating the tailing bit overhead and outperform TBCC by the better capacity approaching coding structure.
Proposal 4: Polar codes can be utilized for ULLRC or control channel applications of NR.
On supporting HARQ-IR, common practice is to set a lower mother code rate and higher puncturing ratio for the first transmission. For retransmissions, parts of punctured bits are transmitted so that the receiver will deal with lower code rate codeblocks for better performance. For Polar code, since the optimal input bit indices will depend on the puncturing pattern, fixing input bits at the indices of the first transmission is not optimal for a lower puncturing ratio. Consequently, a different HARQ design for Polar codes might be required to effectively achieve the HARQ-IR gain as LTE. One example is the incremental freezing design in [3]. But, the optimal solution may still require further investigations.
Observation 3: HARQ for Polar codes will require different design from LTE HARQ-IR for the optimal gain.

References
[1] E. Arikan, “Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input memoryless channels”
[2] A. Balatsoukas-Stimming, et. al., “LLR-Based Successive Cancellation List Decoding of Polar Codes”
[3] B. Li, “Polar Codes for 5G”, online available @ http://nasit15.ucsd.edu/images/PolarCodesfor5G.pptx
[4] M. El-Khamy, et. al., “HARQ Rate-Compatible Polar Codes for Wireless Channels”
[5] P. Trifonov, “Efficient Design and Decoding of Polar Codes”
[6] L. Zhang, et. al., “On the Puncturing Patterns for Punctured Polar Codes”

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image1.png

image2.png

