3GPP TSG RAN WG1 Meeting #85bis	R1-165165
Nanjing, China, 23rd - 27th May 2016
Agenda Item: 7.1.5.1
Source: MediaTek Inc.
Title: 	Discussion on Polar Code Design and Performance
Document for: Discussion

1. [bookmark: _GoBack]Introduction
	Polar code is proved to be a capacity achieving code with systematic and low-complexity encoding [1]. Together with efficient and effective decoding algorithms, e.g., successive cancellation (SC) [1] and CRC-aided list-decoding algorithm [2], Polar code is regarded as one competitive candidate for NR. However, regarding the link adaptation requirement for mobile communications, efficient and effective rate matching design is critical to Polar code application to NR.
Proposal 1: Polar code for NR should have efficient and effective rate matching design
In this contribution, we will review and compare two competitive rate matching designs for Polar code in [3] and [4]. Observing that the designs can perform poorly in some cases, a simple yet effective design is then proposed. Performance results are also provided to confirm the usefulness of the proposal.
The remaining part of the contribution is organized as follows. In Section 2, Polar code encoding and characteristics are introduced. In Section 3, rate matching designs are investigated. Performance comparisons are provided in Section 4, and Section 5 summarizes the contribution with comments on HARQ-IR support.

2. Polar Code Encoding and Characteristics
A size-N Polar code can be constructed recursively. Starting from the 2-by-2 building block below, where y1 = u1 ⊕ u2, and y2 = u2, one can first observe an upper interference channel and an lower enhanced channel that can exploit both y1 and y2 when u1 is known. A simple channel polarization can thus be enforced.
[image:]
Expanding to a larger size of 2n, one can connect a left-stage of 2k size-2n-k Polar codes, 0 < k < n, to a right stage of 2n-k size-2k Polar codes by the following rule: i-th output bit of j-th Polar code in the left stage will connect to j-th input bit of i-th Polar code in the right stage. Below are some example illustrations:
· (2n, 2k) = (4, 2)
[image:]
· (2n, 2k) = (8, 2) in the left, and (2n, 2k) = (8, 4) in the right
[image:] [image:]
Note that, despite of different size configurations in the left and right stages, one can always have bit-reversal mapping between the input bit index and its directly connected output bit index. By direct connection, we mean having a path that won’t diverge from a horizontal edge in each 2-by-2 building block.
With the recursive polarization operations, some useful observations can be made:
Observation 1: Binary presentation of an output bit index shows the trace of interference channels and enhanced channels along the direct path to the connected input bit.
Specifically, MSB denotes and the leftest building block and LSB denote the rightest one. The value of 0 represents an interference channel and 1 denotes an enhanced channel. If encountering an interference channel in a righter block suffers larger loss than encountering one in a lefter block, bit-reversal value of the output bit index relates to the quality of the path directly connect to it. Since the index mapping of directly connected input and output bits follow bit-reversal rule, it turns out input bit index value also relates to quality to its directly connected path
Observation 2: Roughly speaking input bit of a smaller index connects to a path of worse quality from the output bit of bit-reversal index.
When deciding which output bits to puncture, observation 2 can be useful.
	To complete the encoding process of a (N, K) Polar code, where N = 2n is the output bit length and K is a targeted information bit length (including CRC), it requires to select the best K input bit indices. With the scheme in [5], efficient estimation on input bit mutual information (MI) can be carried out for the given value of N and a targeted operating SNR. The MI value can be used for the section. In next Section, we will discuss how to accommodate variable K and adapting the output bit length for a given code rate.

3. Rate Matching Design
1
2
3
Accommodating Variable Input Bit Length K
When the value of K is changed, one needs to re-estimate the MI values for the input bit selection. Since on-line computation can be power consuming, it is desirable to avoid such repeated computations.
Denote the set of bit indices with MI above a target threshold Γ for a given SNR to be J(SNR, Γ). Then, it can be observed that J(SNR1, Γ) will be a subset of J(SNR2, Γ) if SNR1 < SNR2. Therefore, for a given Polar code size N, one can obtain a sorted list of input bit indices according to the order a bit index is earlier to be selected when SNR become larger. Then, choose the first K indices for loading the targeted K input bits. Note that, since puncturing on output bits will make its connected input bits frozen [6], the selected K indices shall exclude the frozen bits.
Proposal 2: For accommodating variable input bit length K, obtain the sorted input bit indices with input bit quality estimation tool off-line, and only pick out the best K unfrozen bit indices for input loading online.
Adapting Output Bit Length N – Prior Arts
In [3], simple bit-reversal puncturing is proposed for Polar codes. Illustrating the design in the previous encoding diagram indicates a sequential puncturing on output bits according to ascending index order:
[image:]
It can be observed that the better-quality path connecting to a larger input bit index can be punctured with low to medium puncture ratio. In case of low SNR and low code rate where few bottom input bits are of good quality, the bit-reversal puncturing may cause critical degradation to the good bits and thus suffer performance loss.
The compound Polar code puncturing [4] is an alternative scheme that performs distributive puncturing in each of the output-stage Polar codes. The output-stage Polar code applies optimized puncturing sequence via off-line search. Regarding the bit-reversal index mapping between input and output, the design can prioritize to remove the worse paths connecting to input bits of smaller indices, as illustrated below with output stage Polar code of size 4. In [4], output-stage Polar code size is chosen to 32. However, degradation may still be expected for the cases with high puncturing ratio and high code rate since part of the good input bits may suffer unexpected puncturing loss due to the limited freedom in output-stage Polar code puncturing.
[image:]
Adapting Output Bit Length N – Proposed Design
In this subsection, a new design is proposed to avoid early degradation to good input bits with bit-reversal puncturing and to eliminate the freedom limitation with compound Polar code puncturing. Some notions are required before the detailed steps.
Let C denote a targeted code rate, and set N = 2n ≧ K/C. Since Polar code decoding complexity is related to N．log2(N), we assume n to be the smallest exponent. Then the mother code rate before output bit puncturing is K/N ≦ C. To match the target code rate, let N’ = ceil(K/C) be the corresponding output bit length, and N-N’ is the targeted number of output bits to be punctured. Further factor N-N’ into 2q + p, with q the largest integer such that 0 ≦ p ≦ 2q – 1. Then the new design involves the following 3 steps:
Step 1:
For first 2q bits, puncture the output bit indices directly connected to the input bits with indices in A = {0, … 2q - 1}
Step 2:
If mother code rate (K/N) <=1/4 and puncturing ratio (N-N’)/N > 1/4, puncturing the output bit indices directly connected to the input bits with indices in B = {2q + (0, …, p/2 - 1)} ∪ {2n-1 + (0, …, p/2 - 1)}.
Otherwise, set B = {2q + q-bit bit reversal of 0, …, (p-1)} for the output bit puncturing
Step 3:
Mark input bits in A ∪ B as frozen bits and skip their indices for input bit loading.
By Observation 2, the above design is to confine the puncturing impact to the paths of worse qualities.

4. Performance Comparison
In this section, performance of the rate matching designs introduced in Section 3 will be provided and compared. For efficient simulations, we first consider K = 100 + 16 where 16 is because of the application of 16-bit CRC for CRC-aided list-decoding. For the decoding list size, we set a moderate size of 8 since a large list size may be inapplicable for timing critical scenarios or control channel settings. The modulation utilized is QPSK for all simulations. Below please check the performance curves with bit-reversal puncturing in green color and compound Polar code puncturing in red color. For code rates ranging from 1/2 to 3/4, both schemes achieve comparable performance.
[image:]
However, for low code rates, bit-reversal puncturing becomes much inferior while compound Polar code puncturing suffers certain loss for high code rate cases (with ≧40% puncturing ratio).
[image:][image:]
	The new proposed design is also simulated and added as blue curves to the following figures
[image:]
[image:][image:]
Observation 4: The proposed rate matching design can achieve better performance than bit-reversal puncturing and compound Polar code puncturing.
To understand how close the proposed design can approach the optimal performance, we further add black dash curves with N fixed to 2n and K is adapted to match the target code rate. Since there is no puncturing loss in the black dash curves, the corresponding BLER can serve as the lower bound. As can be seen in the following figures, the proposed rate matching design has confined loss of 0.1 – 0.5 dB @ 10-2 BLER w.r.t. to the optimal curves.
[image:]
[image:][image:]
Proposal 3: The proposed rate matching design is efficient and effective to be part of Polar code design for NR
Below please also check more comparisons between the optimal curves (black dash) and the proposed design (blue solid) for a larger value of K, 1000 + 16, and a smaller value of K, 40 + 16. It can be observed that the proposed design can perform well for various code rates and input bit lengths..
[image:]
[image:]

5. Summary
In this contribution, we investigate the rate matching design for Polar codes. In particular, it is found the bit-reversal puncturing [3] and compound Polar code puncturing [4] may perform inferior in some cases. Pursuing a universally applicable rate matching design, a new proposal is introduced. Simulations also verified the universally superior performance that is also close to the optimal.
To support HARQ-IR, common practice is to set a lower mother code rate and higher puncturing ratio for the first transmission. For retransmissions, parts of punctured bits are transmitted so that the receiver will deal with lower code rate codeblocks for better performance. For Polar code, since the optimal input bit indices will depend on the puncturing pattern, fixing input bits at the indices of the first transmission is not optimal for a lower puncturing ratio. Consequently, a different HARQ design for Polar codes might be required to effectively achieve the HARQ-IR gain as LTE. One example is the incremental freezing design in [3]. But, the optimal solution may still require further investigations.
Proposal 4: HARQ for Polar codes may require different design from LTE HARQ-IR

References
[1] E. Arikan, “Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input memoryless channels”
[2] A. Balatsoukas-Stimming, et. al., “LLR-Based Successive Cancellation List Decoding of Polar Codes”
[3] B. Li, “Polar Codes for 5G”, online available @ http://nasit15.ucsd.edu/images/PolarCodesfor5G.pptx
[4] M. El-Khamy, et. al., “HARQ Rate-Compatible Polar Codes for Wireless Channels”
[5] P. Trifonov, “Efficient Design and Decoding of Polar Codes”
[6] L. Zhang, et. al., “On the Puncturing Patterns for Punctured Polar Codes”

image3.png
000

100

010

110

001

101

011

111

L ‘Output index of direct connection

010

011

100

101

110

111

Output
index

000
001
010
011
100
101

110

i 111

image4.png

image5.png
8 8

Input
index

000
001
010
011
100
101
110

111

Output

index

() ooo

() oo1

010

011

100

101

110

O 111

$NMR

image6.png

image7.png
BLER

Medium code rate: 1/2, 2/3, 3/4 {left to right)

image8.png
BLER

o Low code rate: 1/5, 1/8, 2/5 (left to right)

image9.png
BLER

High code rate: 5/6

High code rate: 8/9

BLER

image10.png
BLER

Medium code rate: 1/2, 2/8, 8/4 (left to right)

image11.png
BLER

o Low code rate: 1/5, 1/3, 2/5 (left to right)

image12.png
BLER

High code rate: 5/6

High code rate: 8/9

BLER

image13.png
BLER

o Medium code rate: 1/2, 2/8, 8/4 (left to right)

image14.png
BLER

o Low code rate: 1/5, 1/3, 2/5 (left to right)

image15.png
BLER

, High code rate: 5/6

, High code rate: 8/9

BLER

image16.png
E
5
k=3
3
©
3
@
&
g
@
z
o
°
S
3
S
5
©
=
=
=4
=4

image17.png
BLER

40 + 16 bits; Code rate: 1/12, 1/6, 1/3 (left to right)

image1.png

image2.png

