3GPP TSG RAN WG1 Meeting #83	 R1-156831
Anaheim, USA, 15th – 22nd November 2015
Source: 	ZTE
Title:	Codebook design for Class B
[bookmark: Source]Agenda Item:	6.2.4.3.1
[bookmark: DocumentFor]Document for: Discussion and Decision
1. Introduction
In RAN1#82bis meeting, codebook design of Class B [1][2][3] was discussed. In contribution [2], the Rank 1 codebook of Class B K=1 are agreed as follow
· For K=1
· A value N1={1, 2, 4, 8} is configured as one Rel.12 NZP CSI-RS resource
· eNodeB signals the number of ports N1 via NZP CSI-RS resource configuration
· CSI reporting with PMI-feedback-only based on W2-only feedback for N1 ports
· Working assumption: Using all/components of W2 in Rel.13 class A codebook configuration 4
· DFT vectors are replaced by column vectors of identity matrix
In contribution [3], codebook of Class B K>1 are agreed as follow
· For K>1
· For each of the K beams, a value Nk={1, 2, 4, 8} is configured as one Rel.12 NZP CSI-RS resource
· BI feedback is included in CSI report to select one out of K beams
· For the selected beam k=k’, CSI reporting based on legacy codebook for Nk’ ports
[bookmark: OLE_LINK7][bookmark: OLE_LINK8]In [2], only the rank 1 codebook of Class B K=1 is discussed. In this contribution, we discuss the codebook design for the case K=1 and rank>1.
2. Codebook design of Class B

In RAN1#82bis meeting, Rank 1 codebook design for Class A and B is discussed and agreed. Specifically for Class B, codebook of CSI reporting with PMI-only feedback based on W2-only feedback for N1 ports uses all/components of W2 in Rel.13 class A codebook configuration 4 [4], where the DFT vectors in Class A are replaced by column vectors of identity matrix. The modified codebook is shown in the following table, where is a length –N selection vector with 1 in its i-th position and 0 in all other positions.
Table 1 Rank 1 Class B Codebook
	Number of ports
	PMI value i'2
	Resulting precoder

	2
	0-3
	

	4
	0-7
	

	8
	0-15
	

However, no agreements are achieved for the case Rank>1 and K=1. Codebook design for different ranks is given in the following sections.
2.1 Rank 2 codebook design
The Rank 2 codebook has the following structure

where α=1,j is the co-phasing between the two pols. It is also straightforward to reuse W2 codebook from Class A for rank 2 as proposed in [4]. The rank 2 codebooks for different number of antennas ports are as the following table.
Table 2 Rank 2 Class B Codebook
	Number of ports
	PMI value i'2
	

Resulting precoder (and)

	2
	0-3
	

	4
	0-7
	
 or

	8
	0-15
	
 or

2.2 Rank 3 codebook design

 To construct the rank 3 codeword, two different beams and need to be selected. Based on the Rank 1 codebook, the Class B codebook for Rank>1 and K=1 should also reuse the Class A codebook with DFT vectors replaced by unit vectors. However, it is not straightforward to reuse W2 codewords from Class A codebook for rank 3 and 4 as certain beam combination is not orthogonal.
The Nk CSI-RS resources can be divided in to 2 groups with each group containing antenna ports with the same pol. Thus the eNB needs to pre-set Nk/2 beams for Nk CSI-RS resources, and UE uses Class B codebook to perform port selection, i.e., a preferred beam combination is selected. Moreover, the selected beam combination should contain two orthogonal beams. For Class A codebook, the orthogonal beam pair can be ensured by limiting beam combination to orthogonal pair only in W1 or W1&W2 of the codebook explictly. Unlike Class A codebook, the orthogonal beam pair can be only ensured by the eNB implementation since there is no W1 selection at the UE side. The codebook design of the Class B W2 codebook should only allow certain combinations of port selection and restrict other combinations. This implies that the eNB should transmit orthogonal beam pair in the allowed port combination in the codebook design.
In [4], a codebook is designed for Class B by reusing the Class A codebook Config 4. In their codebook, four rank 3 codeword types can be constructed with the two selected beams, which can be classified into two groups:

Group 1: and

Group 2: and
However, the following issues for Nk=8 remain to be settled.
1) At most two of the four resulting precoders contain orthogonal beams for each of the four codeword types. The design in [4] may introduce non-orthogonal beam pair for some codewords.
2) In order to achieve two precoders containing orthogonal beams for each type, the index of the ports cannot be mapped to the selected beam without changing the codeword order.

Specifically, the codebook in [4] selects consecutive port indices when 4 beams are pre-set by eNB, i.e., the final selected beam-pair set is . Fig. 1(a) shows the beam-pair selection scheme of [4]. Note that only and contain orthogonal beams, and the order of the beams is different with the original beam index.

(a)

(b)
Fig. 1 Beam selection and port mapping
Hence UE only need to feed back only two resulting precoders for each type, and the index needs to be modified.
According to our Class A higher rank codebook [5], which is Table 5-1 in Appendix, we remove the cophasing between two pols and add the number of orthogonal-beam-selections. Therefore we only have two types of codewords, e.g.

Type 1:

Type 2:

We can design the Class B codebook as in Table 3, where denotes the selected horizontal beam with the original index as in Table 5-1. The selected beams are mapped to the ports as shown in Fig. 1(b). It is seen that the mapped beams are in the same order as the original beam indices. Moreover, UE only select and feeds back the combination of the orthogonal beams, i.e., and .
Table 3 Rank 3 Class B Codebook
	Number of ports
	PMI value i'2
	

Resulting precoder (and)

	4
	0-3
	

	8
	0-15
	

2.2 Rank 4 codebook design

In order to construct Rank 4 codeword, two different beams and need to be selected. In Rel-10 8Tx codebook, Rank 4 codeword has the following structure

 ,
We propose the Rank 4 Class B codebook based on our Rank 4 Class A codebook, i.e., Table 5-2 in Appendix.
Table 4 Rank 4 Class B Codebook
	Number of ports
	PMI value i'2
	

Resulting precoder (and)

	4
	0-3
	

	8
	0-15
	

Based on the analysis, we have the following proposal:
Proposal: Adopt Rank 3 and Rank 4 codebook respectively in Table 3 and 4 which allows orthogonal beam pair only.
3. Conclusion
In this contribution, we discuss the Class B Rank>1 codebook for K=1 and Nk={2,4,8}. We have the following proposals:
Proposal : Adopt Rank 3 and Rank 4 codebook respectively in Table 3 and 4 which allows orthogonal beam pair only.
4. References
[1] Chairman's Notes RAN1_82bis - final.doc
[2] R1-156280, “WF on PMI feedback for class B K=1”, Samsung, Ericsson, NTT Docomo, AT&T, Intel
[3] R1-156280, “WF on class A and class B CSI reporting for Rel.13 EB/FD-MIMO”, AT&T, etc.
[4] R1-156381, “Joint Proposal on Rank 2 codebook for Class A and B CSI reporting”, Samsung, etc.
[5] R1-156832, “Higher Rank Codebook Design for Class A”, ZTE.
5. Appendix
Table 5-1 Config 4 codebook for 3 layer CSI reporting
	

	0
	1
	2
	3

	

	

	

	

	

	

	4
	5
	6
	7

	

	

	

	

	

	

	8
	9
	10
	11

	

	

	

	

	

	

	12
	13
	14
	15

	

	

	

	

	

Table 5-2 Config 4 codebook for 4 layer CSI reporting
	

	0
	1
	2
	3

	

	

	

	

	

	

	4
	5
	6
	7

	

	

	

	

	

	

	8
	9
	10
	11

	

	

	

	

	

	

	12
	13
	14
	15

	

	

	

	

	

image2.wmf
1

1

,0,1,2,3

2

k

k

j

éù

=

êú

ëû

image39.wmf
11,111,1121,221,2

(3)

,2,,

sisiOsisi

W

+

oleObject55.bin

image40.wmf
11,111,1121,221,2

(3)

,2,,

sisiOsisi

W

+

%

oleObject56.bin

image41.wmf
11,111,1121,221,2

(3)

1,12,,

sisiOsisi

W

+++

oleObject57.bin

image42.wmf
11,111,1121,221,2

(3)

1,12,,

sisiOsisi

W

+++

%

oleObject58.bin

oleObject59.bin

oleObject60.bin

oleObject2.bin

image43.wmf
11,111,1121,221,2

(3)

2,22,,

sisiOsisi

W

+++

oleObject61.bin

image44.wmf
11,111,1121,221,2

(3)

2,22,,

sisiOsisi

W

+++

%

oleObject62.bin

image45.wmf
11,111,1121,221,2

(3)

3,32,,

sisiOsisi

W

+++

oleObject63.bin

image46.wmf
11,111,1121,221,2

(3)

3,32,,

sisiOsisi

W

+++

%

oleObject64.bin

oleObject65.bin

oleObject66.bin

image3.wmf
(2)

(2)

1

,0,1,2,3;0,1

2

i

k

i

e

ki

je

éù

==

êú

ëû

image47.wmf
11,111,1121,221,2

(4)

,,,,0

sisiOsisi

W

+

oleObject67.bin

image48.wmf
11,111,1121,221,2

(4)

,,,,1

sisiOsisi

W

+

oleObject68.bin

image49.wmf
11,111,1121,221,2

(4)

1,1,,,0

sisiOsisi

W

+++

oleObject69.bin

image50.wmf
11,111,1121,221,2

(4)

1,1,,,1

sisiOsisi

W

+++

oleObject70.bin

oleObject71.bin

oleObject72.bin

oleObject3.bin

image51.wmf
11,111,1121,221,2

(4)

2,2,,,0

sisiOsisi

W

+++

oleObject73.bin

image52.wmf
11,111,1121,221,2

(4)

2,2,,,1

sisiOsisi

W

+++

oleObject74.bin

image53.wmf
11,111,1121,221,2

(4)

3,3,,,0

sisiOsisi

W

+++

oleObject75.bin

image54.wmf
11,111,1121,221,2

(4)

3,3,,,1

sisiOsisi

W

+++

oleObject76.bin

oleObject77.bin

oleObject78.bin

image4.wmf
(4)

(4)

1

,0,1,2,3;0,1

2

i

k

i

e

ki

je

éù

==

êú

ëû

image55.wmf
11,111,1121,221,2

(4)

,2,,,0

sisiOsisi

W

+

oleObject79.bin

image56.wmf
11,111,1121,221,2

(4)

,2,,,1

sisiOsisi

W

+

oleObject80.bin

image57.wmf
11,111,1121,221,2

(4)

1,12,,,0

sisiOsisi

W

+++

oleObject81.bin

image58.wmf
11,111,1121,221,2

(4)

1,12,,,1

sisiOsisi

W

+++

oleObject82.bin

oleObject83.bin

oleObject84.bin

oleObject4.bin

image59.wmf
11,111,1121,221,2

(4)

2,22,,,0

sisiOsisi

W

+++

oleObject85.bin

image60.wmf
11,111,1121,221,2

(4)

2,22,,,1

sisiOsisi

W

+++

oleObject86.bin

image61.wmf
11,111,1121,221,2

(4)

3,32,,,0

sisiOsisi

W

+++

oleObject87.bin

image62.wmf
11,111,1121,221,2

(4)

3,32,,,1

sisiOsisi

W

+++

oleObject88.bin

image5.wmf
01

(2)

01

W

aa

æö

=

ç÷

-

èø

xx

xx

oleObject5.bin

image6.wmf
0

x

oleObject6.bin

image7.wmf
1

x

oleObject7.bin

image8.wmf
{

}

(2)(2)

0100

(,)(,)

=

xxee

oleObject8.bin

image9.wmf
{

}

(2)(2)(2)(2)

010011

(,)(,),(,)

=

xxeeee

oleObject9.bin

image10.wmf
{

}

(2)(2)

0101

(,)(,)

=

xxee

oleObject10.bin

image11.wmf
{

}

(4)(4)(4)(4)(4)(4)(4)(4)

0100112233

(,)(,),(,),(,),(,)

=

xxeeeeeeee

oleObject11.bin

image12.wmf
{

}

(4)(4)(4)(4)(4)(4)(4)(4)

0101120313

(,)(,),(,),(,),(,)

=

xxeeeeeeee

oleObject12.bin

oleObject13.bin

oleObject14.bin

image13.wmf
001

(3)

0

001

W

æö

=

ç÷

--

èø

xxx

xxx

oleObject15.bin

image14.wmf
010

(3)

1

010

W

æö

=

ç÷

-

èø

xxx

xxx

oleObject16.bin

image15.wmf
101

(3)

2

101

W

æö

=

ç÷

--

èø

xxx

xxx

oleObject17.bin

image16.wmf
011

(3)

3

011

W

æö

=

ç÷

-

èø

xxx

xxx

oleObject18.bin

image17.wmf
{

}

0104411550

(,)(,),(,),(,),(,)

=

xxvvvvvvvv

oleObject19.bin

image18.wmf
04

(,)

vv

oleObject20.bin

image19.wmf
15

(,)

vv

oleObject21.bin

image20.emf
: 0beam1234567: 0port123

oleObject22.bin
�

image21.emf
: 0beam1234567: 0port123

oleObject23.bin
�

oleObject24.bin

oleObject25.bin

image22.wmf
·

v

oleObject26.bin

image23.wmf
(4)(4)

02

(,)

ee

oleObject27.bin

image24.wmf
(4)(4)

13

(,)

ee

oleObject28.bin

oleObject29.bin

oleObject30.bin

image25.wmf
{

}

012

(,)(,),0,1

ii

i

+

==

xxvv

oleObject31.bin

image26.wmf
{

}

{

}

{

}

0144

0188

0148

(,)(,),(,),0,1,2,3,0,1,2,3,

(,)(,),(,),0,1,2,3,0,1,2,3,

(,)(,),(,),0,1,2,3,0,1,2,3,

iijj

iijj

iijj

ijij

ijij

ijij

++

++

++

===¹

===¹

===¹

xxvvvv

xxvvvv

xxvvvv

oleObject32.bin

oleObject33.bin

oleObject34.bin

image27.wmf
0101

(4)

0101

W

aaaa

æö

=

ç÷

--

èø

xxxx

xxxx

oleObject35.bin

image28.wmf
1,

j

a

=

oleObject36.bin

oleObject37.bin

oleObject38.bin

oleObject39.bin

oleObject40.bin

image29.wmf
2

i

oleObject41.bin

image30.wmf
1,11,2

,

ii

oleObject42.bin

image1.wmf
()

N

i

e

image31.wmf
11,111,1121,221,2

(3)

,,,

sisiOsisi

W

+

oleObject43.bin

image32.wmf
11,111,1121,221,2

(3)

,,,

sisiOsisi

W

+

%

oleObject44.bin

image33.wmf
11,111,1121,221,2

(3)

1,1,,

sisiOsisi

W

+++

oleObject45.bin

image34.wmf
11,111,1121,221,2

(3)

1,1,,

sisiOsisi

W

+++

%

oleObject46.bin

oleObject47.bin

oleObject48.bin

oleObject1.bin

image35.wmf
11,111,1121,221,2

(3)

2,2,,

sisiOsisi

W

+++

oleObject49.bin

image36.wmf
11,111,1121,221,2

(3)

2,2,,

sisiOsisi

W

+++

%

oleObject50.bin

image37.wmf
11,111,1121,221,2

(3)

3,3,,

sisiOsisi

W

+++

oleObject51.bin

image38.wmf
11,111,1121,221,2

(3)

3,3,,

sisiOsisi

W

+++

%

oleObject52.bin

oleObject53.bin

oleObject54.bin

