
[bookmark: _GoBack]3GPP TSG RAN WG1 Meeting #83 	R1-156683
Anaheim, USA, 15th - 22th November 2015

Source: 		NEC
Title:			Extending the Scrambling sequence for DL/UL transmissions
Agenda Item:		6.2.1.4
Document for:	Discussion and Decision
Introduction
Currently a bit-level scrambling code/sequence is applied for all DL and UL transmissions such as PBCH, PDSCH, PDCCH, PCFICH, PHICH and PUSCH, in order to randomise the interference between the neighbouring cells. The scrambling sequence has a period of 10 subframes (i.e. one radio frame). In the case of PUSCH and PDSCH, the scrambling sequence generator is initialized in each sub-frame as follows:

In [4], it is stated that the period of scrambling sequence is 10 subframes and then repeats itself. In the case of long repetition combining over more than one radio frame, if the inter-cell interference is also using long repetition then the interference will combine coherently between radio frames and consequently the SINR gain of repetition combining will be reduced.

In this contribution, we investigate the performance difference of Rel-8 and extended scrambling sequences for long repetitions for Rel-13 MTC.

Extended Scrambling sequence
In order to randomize the interference during long repetition combining, we applied the following modified scrambling sequence initialization in the case of long repetition transmissions:

.
The differences compared to the legacy scrambling sequence initialization are:
1.

 is replaced by which changes every radio frame based on SFN
2.

Bit 30 is set to 1, so that even if of a long-repetition UE happens to match with of a legacy UE, these UEs will still apply different scrambling sequence.

Performance evaluations
We have evaluated the performance of PDSCH with repetitions longer than 10 subframes in link level simulation taking into account the inter-cell interference. The inter-cell interference is modelled in such a way that two users have transmissions at the same time in the same frequency bandwidth but each user (i.e. with a different C-RNTI) is attached to a different cell (i.e. with different Cell ID). One of the users is taken to be the desired signal and the other one is assumed to be the interfering signal. The link level simulation assumptions are based on [3] and are captured in Table 1 in the Appendix section.
We simulated two scenarios, both with average SINR of -3 dB:
1. Noise dominated: SNR=-2.96 dB, INR=-20 dB, SINR=-3.0 dB
2. Interference dominated: SNR=1.76 dB, INR=3.0 dB, SINR=-3.0 dB
In each scenario, we tried both the legacy scrambling sequence and the extended/long scrambling sequence described above.
Figure 1 below shows the link level simulation results with and without narrowband frequency hopping.
In case of no frequency hopping and noise dominated, it can be seen that with Rel-8 scrambling and with long scrambling, the difference in terms of BLER performance is very small. However, it can be observed that in case of interference dominated, the difference between Rel-8 and long scrambling in terms of BLER performance is very large.
In case of four narrowbands with frequency hopping and noise dominated, it can be seen that with Rel-8 scrambling and with long scrambling, the difference in terms of BLER performance is very small. However, it can be observed that in case of interference dominated, the difference between Rel-8 and long scrambling in terms of BLER performance is very large, hence, showing the benefit of having extended scrambling sequence for long repetitions.
It can be summarized that in case of interference dominated, the extended scrambling sequence for long repetitions has a better performance than Rel-8 scrambling sequence regardless whether frequency hopping is applied or not.
Observation: In case of interference dominated, the extended scrambling sequence for long repetitions has significant performance over Rel-8 scrambling sequence.

[image:]
Figure 1. Comparing Legacy Rel-8 and Extended scrambling sequences

Conclusion
In this contribution, we have investigated the performance difference of Rel-8 and extended scrambling sequences for long repetitions for Rel-13 MTC. We have the following observations and proposals:

Observation: In case of interference dominated, the extended scrambling sequence for long repetitions has significant performance over Rel-8 scrambling sequence.

Proposal 1: Adapt extended scrambling sequence for long repetitions as follows:

 Where .

References
1) 3GPP TR 36.888 V12.0.0, “Study on provision of low-cost MTC UEs based on LTE (Release-12)”.
2) RP-150492, “Revised WI: Further LTE Physical Layer Enhancements for MTC”, Ericsson, RAN#67
3) R1-144513, “Simulation Assumptions for Reference Cases for MTC”, Nokia Networks, RAN1#78bis
4) R1-154460, “Discussion on open issues in MTC PDSCH”, Spreadtrum Communications

Appendix – Simulation Assumptions
Table 1. Link level Simulation Assumption (R1-144513 [3])
	Parameter
	Value

	Number of subframes
	50000

	System bandwidth
	5 MHz

	Frame structure
	FDD

	Carrier frequency
	2.0 GHz for FDD

	Antenna configuration
	2x1

	Channel model
	EPA

	Doppler spread
	1 Hz

	Transport block size (TBS)
	328 bits

	Number of PRBs
	6

	Redundancy versions (RV)
	RV0

	Transmission Mode
	TM2

	Frequency error
	Not modelled

	Performance target/ Requirement
	1% BLER for SIB and 10% BLER for Unicast PDSCH

	Channel estimation
	Practical (single subframe channel estimation)

	Inter-cell interference modelling
	Two cells where each cell has one user. Each user (i.e. with a different C-RNTI) is attached to a different cell (i.e. with different Cell ID)

1

image2.wmf
ë

û

cell

ID

9

s

13

14

RNTI

30

init

2

2

2

2

'

2

N

n

q

n

c

+

×

+

×

+

×

+

=

oleObject2.bin

image3.wmf
(

)

16

RNTI

RNTI

2

mod

'

SFN

n

n

+

=

oleObject3.bin

image4.wmf
RNTI

n

oleObject4.bin

image5.wmf
RNTI

'

n

oleObject5.bin

image6.wmf
RNTI

'

n

oleObject6.bin

oleObject7.bin

image7.emf

oleObject8.bin

oleObject9.bin

image1.wmf
ë

û

cell

ID

9

s

13

14

RNTI

init

2

2

2

2

N

n

q

n

c

+

×

+

×

+

×

=

oleObject1.bin

