Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: _Ref298777854]3GPP TSG RAN WG1 Meeting #82 	 R1-154420
Beijing, China, 24th - 28th August 2015

Source: 	Ericsson
[bookmark: Title]Title:	HARQ-ACK transmission for Rel-13 CA enhancement
Agenda Item:	7.2.2.1.2
Document for:	Discussion and Decision
[bookmark: OLE_LINK21][bookmark: OLE_LINK22]Introduction
HARQ-ACK transmission for Rel-13 CA was discussed at RAN1 #81 and the following agreements were reached
· The maximum HARQ-ACK codebook size in the uplink by one UE in one subframe for DL CA of up to 32 CCs is at least 128 bits
· In case of FDD PUCCH cell, the maximum HARQ-ACK codebook size is 64 bits
Furthermore, there were some discussions on HARQ-ACK codebook size adaptation but no agreements can be reached. In this contribution, we share our views on HARQ-ACK codebook adaptation for Rel-13 CA enhancement.
Discussion
Slow codebook adaptation and smart decoding
In LTE Rel-10/11/12 CA, the HARQ-ACK codebook is determined in a semi-static manner. In particular, the HARQ-ACK codebook size and the ordering of the HARQ-ACK bits are determined based on carriers configured by higher layers. This is also referred to as the slow codebook adaptation. With slow codebook adaptation, the HARQ-ACK feedback for the unscheduled carriers is set to NACK and the eNB could make use of the known bits at the decoder without causing performance degradation [1].
[bookmark: OLE_LINK7][bookmark: OLE_LINK8]In principle, slow codebook adaptation can also be applied for Rel-13 CA enhancement. The difference here is that smart decoding for TBCC which is agreed as the coding scheme when the number of HARQ-ACK/SR bits is larger than 22 is different from the smart decoding for RM code. As an example, in case of decoding TBCC using the Viterbi algorithm, each input bit corresponds to a transition from one state to another in the decoding trellis. If some of the input bits are known, this means that not all transitions in the trellis are possible for that stage. The Viterbi algorithm can easily be modified to take this into account by adding a large bias to the branch metrics of the possible transitions, thereby ensuring that no impossible transitions are chosen.
[bookmark: _GoBack]It should be noted that the performance of smart decoding for TBCC is dependent on the number as well as the positions of known bits. If there are too many known bits in the HARQ-ACK codebook, it will be difficult to achieve the same performance with the scheme assuming a smaller HARQ-ACK codebook size without any redundant known bits. Moreover, the distribution/positions of the known bits will also have an impact on the performance of smart decoding, e.g. consecutive known bits in the HARQ-ACK codebook cannot help to improve the decoding performance. This essentially implies two things: firstly slow codebook adaptation may not be proper for the case when the UE is configured a large number of carriers but only a few of them are scheduled; secondly it is preferred that the known bits are distributed evenly over the HARQ-ACK codebook for the sake of the performance of smart decoding.
Therefore, to ensure the good performance of smart decoding for TBCC, it is important to make sure that the known bits in the HARQ-ACK codebook are not consecutive. To achieve this target, one solution is to introduce an interleaver such that the HARQ-ACK feedback bits are interleaved before entering the TBCC encoder. As one candidate, the bit reverse order (BRO) interleaver can be applied. An illustration of BRO interleaver for the cases of 32 bits is given in Figure 1. It can be seen that the first 16 consecutive input positions are put into the even output positions spread across the entire output order.
[image:]
[bookmark: _Ref427306696]Figure 1 Bit reverse order interleaver for 32 bits
The performance of TBCC smart decoding with the BRO interleaver is shown in Figure 2. The HARQ-ACK payload is 64 bits including 32 information bits in the first half and 32 consecutive zeros in the second half. The BLER performances for TBCC smart decoding with and without the BRO interleaver are compared. It can be observed that there is 2 dB performance improvement (at 1% BLER performance target) with BRO interleaver compared to the one without the interleaver. It should be noted that the performance gain may vary depending on HARQ-ACK codebook size, the number and distribution of known bit in other cases.
[image:]
[bookmark: _Ref427310201]Figure 2 BLER for TBCC smart decoding with BRO iterleaver
Observation 1:
· Smart decoding is essential to achieve better decoding performance of HARQ-ACK.
· To ensure the performance of smart decoding, it is important to make sure that the known bits are not consecutive.
Proposal 1: Bit reverse order (BRO) inter-leaver is adopted to interleave the HARQ-ACK bits before the TBCC encoder.
In Rel-13, up to 32 DL carriers need to be supported including both licensed and unlicensed carriers. Even if it is reasonable to assume that the UE is configured with a large number of carriers only when there is such traffic demand, there will be cases that some of configured carriers may not be accessible in particular when the carrier is on unlicensed spectrum and resource contention may fail due to transmission from other nodes or system. Moreover, it is very likely that the unaccessible unlicensed carriers are contiguous considering the WiFi characteristics. Hence there will be cases that the UE are not scheduled on a number of carriers due to resource contention failures. In this case, even if fast codebook adaptation is applied, the UE may have to set
[image:]
[bookmark: _Ref427266564]Figure 3 Scheduler decision in one subframe: CC 0~3 (licensed carriers), CC6~7 (unlicensed carriers)
a number of NACK bits in the HARQ-ACK codebook. This is because the DL assignment for the unlicensed carriers has to be prepared together with data in advance of LBT, i.e. the eNB has to assume that LBT will be successful hence there will be HARQ-ACK for each carrier. However, when LBT failure does happen, the UE cannot figure out the reason why (E)PDCCH is not detected, i.e. whether it is due to bad channel condition or LBT failure. Therefore, the HARQ-ACK feedback for unscheduled carriers needs to be set to NACK to ensure the HARQ-ACK codebook size alignment between the eNB and the UE. One example is given in Figure 3 where an extended DAI scheme over the CC domain is assumed [2]. Based on the above analysis, smart decoding is also needed even for fast codebook adaptation otherwise the performance of HARQ-ACK detection will be degraded as exemplified in Figure 2.
Observation 2: Smart decoding is needed even if fast codebook adaptation is applied.
Fast codebook adaptation and HARQ-ACK codebook ambiguity
In contrast to slow codebook adaptation, fast codebook adaptation was proposed for Rel-13 CA by several companies [2][3][4], e.g. the HARQ-ACK codebook is adapted based on the scheduled carriers. In order to determine the size and the ordering of the HARQ-ACK bits, the existing DAI schemes in TDD system need to be enhanced. One such method is to extend DAI field in the frequency domain [2] such that the enhanced DAI field is incremented first over the scheduled cells then over time.
Despite the increased DL signalling overhead, one obvious problem with the extended DAI scheme is that in case the UE missed the “last” grant(s), there will be ambiguity between the eNB and the UE regarding the HARQ-ACK codebook. One example is given in Figure 4. In this example, we assume two bits in each DCI grant are be used to indicate the DAI. Based on the DAI, UE can decide the ACK/NACK position for each CC and the length of the total HARQ feedback bits. For example, assume 32 CCs are configured and 6 CCs are scheduled, i.e. {CC1, CC2, CC3, CC5, CC31, CC32}. The DAI on the scheduled CCs is {00, 01, 10, 11, 00, 10}, as shown in Figure 4. If there are no any missing of DCI grant, both eNB and UE will assume 6 CCs are scheduled. However, in case the DCI on CC32 is missing at UE, eNB will assume 6 CCs, while UE will assume 5 CCs are scheduled. Consequently, UE will assume 10 bits (here, assume 2 ACK/NACK bits are needed for each CCs) HARQ-ACK. However, eNB will still assume 12 bits for the HARQ-ACK bits since eNB have no information on the UE detection status. Hence HARQ-ACK cannot be correctly detected at the eNB receiver.
Assuming 1% (E)PDCCH BLER, there will be 1% probability that the UE will miss the “last” DL grant and this probability will be even higher for unlicensed carriers at high system load. When this happens and the number of HARQ-ACK bits is larger than 22 (CRC attachment is applied), this will most likely lead to a CRC check failure which causes all HARQ bits to be treated as NACKs. This in turn leads to unnecessary retransmissions of correctly decoded data and thus degrades the DL throughput, which is more pronounced when there are a large number of aggregated carriers in Rel-13. Theoretically, it is possible for the eNB to do blind detection by assuming different HARQ-ACK codebook size(s) but this inevitably increases the receiver complexity significantly due to potentially large number of hypotheses.
Observation 3: The common understanding of HARQ-ACK codebook cannot be ensured when the UE missed the “last” (E)PDCCH DL assignment(s).
[image:]
[bookmark: _Ref426029867]Figure 4: Ambiguity of HARQ-ACK codebook due to miss detection of last (E)PDCCH assignment(s)
In order to solve the above problem, one compromise solution between slow and fast codebook adaptation can be considered. In particular, one could define a set of predefined HARQ-ACK codebook sizes. The HARQ-ACK codebook size can only be selected from this predefined set, e.g. {22, 32, 40, 48, 56, …, 128}. At the UE, the HARQ-ACK codebook size is selected as the minimum value from the predefined set which is larger than the feedback bits determined by the scheduled CCs detected at the UE. Although with this proposal, the HARQ-ACK codebook ambiguity problem can be mitigated to a large extend, one obvious problem is that the mismatch still happens when the number of scheduled carriers is close to the predefined codebook sizes. Essentially there is trade-off between the flexibility of HARQ-ACK codebook adaptation and the probability of HARQ-ACK codebook mismatch. With a large number of HARQ-ACK codebook size, the HARQ-ACK codebook size can be adapted more dynamically while the probability of mismatch also increases. On the contrary, the HARQ-ACK codebook size can only be selected from a few candidate values while the probability of mismatch also decreases.
One further improvement of the above solution is to divide the set of HARQ-ACK codebook sizes into two subsets and map each of them to a specific DAI ordering. As one example shown in Figure 5, the ascending DAI order is used if the number of bits to be reported is in the subset {22, 40, 56, …, 120} and the descending DAI order is used if the number of bits to be reported is in the subset {32, 48, 64, …, 128}. At the UE side, the UE first tries to determine which ordering was used, and then determine the codebook size. With this solution, the UE essentially chooses the codebook size from a smaller set, hence the probability of codebook size mismatch is much smaller than the original proposal. At the same time, the flexibility of codebook adaptation can still be maintained given that the number of predefined HARQ-ACK codebook sizes does not change.
[image:]
[bookmark: _Ref426807301]Figure 5 Mapping between DAI ordering and predefined HARQ-ACK codebook size subset
Another alternative to solve the HARQ-ACK misalignment is to signal the HARQ-ACK codebook size from the UE to the eNB. For example, in case the HARQ-ACK feedback is transmitted on PUCCH, the HARQ-ACK codebook size can be implicitly indicated by the cyclic shift of PUCCH DMRS. It should be noted that the cyclic shift may not cover all possible HARQ-ACK codebook sizes hence the mapping between the HARQ-ACK codebook size and CS may not be one-to-one. In another example, when the extended DAI scheme is applied for fast codebook adaptation, the UE could determine the PUCCH DMRS CS based on DAI value of the last received DL DCI. At the eNB, it could first determine HARQ-ACK codebook size by detecting the cyclic shift of PUCCH DMRS then perform PUCCH detection.
Proposal 2: RAN1 should decide solutions to ensure HARQ-ACK codebook size alignment between the eNB and the UE.
Conclusions
In this contribution, we discussed the issue related to HARQ-ACK transmissions. Based on the discussion, we have the following observations and proposal:
Observation 1:
· Smart decoding is essential to achieve better decoding performance of HARQ-ACK.
· To ensure the performance of smart decoding, it is important to make sure that the known bits are not consecutive.
Observation 2: Smart decoding is needed even if fast codebook adaptation is applied.
Observation 3: The common understanding of HARQ-ACK codebook cannot be ensured when the UE missed the “last” (E)PDCCH DL assignment(s).
Proposal 1: Bit reverse order (BRO) inter-leaver is adopted to interleave the HARQ-ACK bits before the encoder.
Proposal 2: RAN1 should decide solutions to ensure HARQ-ACK codebook size alignment between the eNB and the UE.
Reference
[1] [bookmark: _Ref426632890][bookmark: _Ref419468901]R1-103508, “On ACK/NACK codebook performance for carrier aggregation”, Ericsson, ST-Ericsson.
[2] [bookmark: _Ref427312631]R1-152810, “Dynamic adaptation of HARQ-ACK feedback size and PUCCH format”, Nokia Networks
[3] [bookmark: _Ref427313179]R1-152463, “HARQ-ACK Codebook size determination and fallback operation for up to 32 component carriers”, Huawei, HiSilicon
[4] [bookmark: _Ref427313180]R1-152852	Discussion on HARQ-ACK bits compression for eCA	Samsung
[5] R1-152001, “On Scheduling in LAA with Only DL Transmissions”, Ericsson
	1/5	
image2.emf
-10-8-6-4-20246810

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

SNR (dB)

BLER

EPA 3km/h 1Tx 2Rx AWGN DCT

ninfo = 32, 64 reported, w/o BRO interleaver

ninfo = 32, 64 reported, with BRO interleaver

image3.png

image4.png

image5.png

image1.png

