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1. Introduction
The approved WID [1] includes enhancements on CSI reporting in the following areas which are one of major work scopes for the EBF/FD-MIMO WI:
· For non-precoded CSI-RS, codebook for 2D antenna arrays for support of {8,12,16} CSI-RS ports and associated necessary channel state information. 

· If there is not significant gain shown for new codebook for 8 CSI-RS ports, the current codebook for 8 CSI-RS ports is retained. 
· Necessary channel state information for beamformed CSI-RS
· Extension of Rel-12 CSI reporting mechanism for both periodic and aperiodic CSI reports

Also, in section 6.2.1.2 in TR36.897 [2], following schemes on enhancements related to non-precoded CSI-RS-based schemes have been captured.
Scheme 1, Kronecker Product (KP) type codebook: In this example, the precoding matrix W is extended from Rel.10/12 to support 2-D array where W1 can be described as follows: 
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Here ( denotes the Kronecker product and the two sub-matrices represent two polarization groups. The columns of 
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 are taken from a DFT matrix. A precoding codebook associated with W2 can follow one the following alternative designs:

· The precoding matrix or vector W2 corresponds to a quantized co-phasing between two polarization groups in W1 and may also include column selection from W1. 

· The precoding matrix or vector W2 performs linear transformation to W1 per polarization, which may include beam selection, weighted linear combination of beams. 

· The precoding matrix or vector W2 performs distinct selection of beams per layer and/or per polarization, and quantized co-phasing between two polarization groups.

Scheme 2: This scheme follows scheme 1 yet with a further constraint of 
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 to W1. That is, the two sub-matrices of W1 are identical.
Scheme 3: The codebook associated with W1 contains only the identity matrix. In this case, the associated PMI(s) correspond to recommendation(s) of W2 . In addition, RI, and CQI conditioned on precoding matrix hypothesis W are reported.

Scheme 4: The precoding matrix or vector W1 performs selection of antenna ports. 

Scheme 5: The precoding matrix or vector W1 has the structure of 
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denotes a column selection operation which selects either all or a subset of the columns in 
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). The operator ( denotes the Kronecker product and the two sub-matrices represent two polarization groups. Each column of 
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 is taken from a DFT matrix. A precoding codebook associated with W2 can follow that in Scheme 1.
In this contribution, we propose codebook designs for 2D antenna arrays and provide their performance evaluation results.

2. New codebook design
In this section, codebook designs for 16 TXRUs as depicted in Figure 1 are represented. For the ease of explanation, we focus on the case of the antenna array with (4, 2, 2, 16). Then, the proposed codebook has dual codebook structure as 
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where W1 corresponds to long term and/or wideband channel properties, and W2  corresponds to short-term and subband channel properties. In addition, W1 consists of two identical sub matrices representing beam directions in two polarization groups, and W2 corresponds to the quantized polarization phase and beam selection of W1. Due to dual codebook structure, feedback overhead can be saved by configuring different feedback periodicity, i.e., long term feedback for W1 and short term feedback for W2. 
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Figure 1. 2D antenna configurations with 16 TXRUs.

Compared to Rel. 12/10 codebooks, the main difference in codebook design for 2D antenna array is exploiting additional degrees of freedom in vertical domain. To this end, Kronecker product of horizontal and vertical DFT matrices is introduced in W1 while maintaining the block diagonal structure as  
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[image: image19.wmf]1

11

(0,2

)

1

,

L

ii

=-

L

is an index for W1, 
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is a number of feedback bits for W1,  and 
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 is constructed by Kronecker product of selected columns of horizontal and vertical grid-of-beam vectors according to 
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2.1. Codebook designs for W1
First, we define a fat matrix of W1 as 
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are fat matrices for horizontal and vertical domain, respectively. Since we focus on the case of (4, 2, 2, 16), 
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. Here, we assume the oversampling factor of 16 to be compatible with Rel. 12 4Tx codebook. Similarly, 
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where 
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is a number of vertical beams and 
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is  a steering phase offset  to control the vertical tilting angle. After Kronecker product operation, the total number of beams in fat matrix X becomes
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From now, we illustrate methods to determine 
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· Opt. 1: Horizontal stripe - For a given vertical beam, sequential 4 beams in horizontal domain are chosen. In this option, 2 beams are overlapped between adjacent 
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· Opt. 2: Rectangle - Sequential 2 beams in both horizontal and vertical domains are chosen, and 2 beams are overlapped between adjacent 
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· Opt. 3: Check pattern – For given 8 beams which are constructed from 4 sequential horizontal beams and 2 sequential vertical beams, 4 beams are chosen one across the one, i.e., check pattern. In this option, 2 beams are overlapped between 
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For the explanation purpose, Figure 2 is presented below. 
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Figure 2. Graphical description of option 1, 2 and 3 with 
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Note that, with option 1, 2 and 3, the feedback bits for W1, 
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If we allow 8 beams for
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Figure 3. Graphical description of Option 4 and 5 with 
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As a result, W1 matrix is constructed using equation (2) and either of (6), (7), (8), (9) or (10). 
2.2. Codebook designs for W2
For the case of Option 1, 2 and 3, we can reuse W2 in Rel. 12 4Tx codebook, since 
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consists of 4 beams. Then, for rank 1, we have W2 as   
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is rotation term to increase the quantization resolution of co-phasing between two polarization groups. 

For rank 2, W2 is expressed as
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where 
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    In option 4 and 5, 
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In a similar way, for rank 1, W2 can be constructed as
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For rank 2, W2 is expressed as
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where 
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. Note that the selection pairs in (14) are obtained by comparing Chordal distance of all possible codebook pairs. In these option 4 and 5, 5 bits are required for short term feedback, i.e.,
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In summary, the various codebook designs for (4, 2, 2, 16) are proposed and are easily extended to other 2D antenna array. The related performance evaluation results are presented in the section below.

3. Performance Evaluation
In this section, we evaluate the performance among Cat-2 baseline and various codebook designs for (4, 2, 2, 16). For fair comparison, following CSI-RS overhead listed in Table 1 is considered.  
Table 1: Parameters for 2D codebook designs

	
	Cat-2 baseline
	Proposed Codebook designs

	 # of REs for NZP and ZP CSI-RSs
	16*3
	16*3

	CSI-RS periodicity [ms]
	10
	10

	average CSI-RS overhead (REs/RB/subframe)
	4.8
	4.8

	CSI-RS de-boosting factor
	1
	2


Due to the RS power restriction for non-precoded based schemes, the CSI-RS de-boosting factor is introduced in our simulation. The CSI-RS de-boosting factor of 2 indicates that the CSI-RS transmission power becomes a half of that for Cat-2 baseline. Also, 10ms feedback periodicity is assumed since the scheme based on increasing CSI-RS feedback periodicity may provide better performance than the scheme with increasing CSI-RS overhead as shown in [3].
Tables 2, 3, and 4 show the comparison results among codebook options via varying the number of feedback bits for W1 and W2. In the simulations, CSI-RS port is one-to-one mapped to TXRU. In addition, cell association is based on RSRP from CRS port 0 which is mapped to the first TXRU, and vertical beam selection margin is assumed to be 3dB. Also, we employ 
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Table 2: Performance comparison for (4, 2, 2, 16) with 
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	Mean UE Throughput (bps/Hz)
	Mean UE Throughput Gain
	5% UE Throughput (bps/Hz)
	5% UE Throughput Gain
	50% UE Throughput (bps/Hz)
	Resource Utilization
	FTP load, λ (UEs/s/sector)

	Cat-2 baseline
	3.117
	
	0.857
	
	2.857
	0.27
	2

	Option 1
	3.185
	2.17%
	0.905
	5.66%
	3.008
	0.26
	

	Option 2
	3.218
	3.23%
	0.926
	8.10%
	3.053
	0.26
	

	Option 3
	3.231
	3.64%
	0.926
	8.10%
	3.053
	0.26
	

	Cat-2 baseline
	2.169
	
	0.322
	
	1.688
	0.55
	3

	Option 1
	2.247
	3.59%
	0.388
	20.45%
	1.810
	0.52
	

	Option 2
	2.271
	4.69%
	0.404
	25.67%
	1.835
	0.51
	

	Option 3
	2.293
	5.69%
	0.407
	26.57%
	1.852
	0.51
	

	Cat-2 baseline
	1.525
	
	0.093
	
	0.899
	0.81
	4

	Option 1
	1.601
	5.00%
	0.134
	44.56%
	1.018
	0.78
	

	Option 2
	1.622
	6.33%
	0.135
	45.15%
	1.042
	0.78
	

	Option 3
	1.631
	6.98%
	0.137
	47.15%
	1.050
	0.77
	


Table 3: Performance comparison for (4, 2, 2, 16) with 
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	Mean UE Throughput (bps/Hz)
	Mean UE Throughput Gain
	5% UE Throughput (bps/Hz)
	5% UE Throughput Gain
	50% UE Throughput (bps/Hz)
	Resource Utilization
	FTP load, λ (UEs/s/sector)

	Cat-2 baseline
	3.117
	
	0.857
	
	2.857
	0.27
	2

	Option 1
	3.185
	2.16%
	0.913
	6.62%
	3.030
	0.26
	

	Option 2
	3.207
	2.87%
	0.926
	8.10%
	3.030
	0.26
	

	Option 3
	3.215
	3.12%
	0.915
	6.87%
	3.053
	0.26
	

	Cat-2 baseline
	2.169
	
	0.322
	
	1.688
	0.55
	3

	Option 1
	2.240
	3.28%
	0.400
	24.30%
	1.794
	0.52
	

	Option 2
	2.257
	4.06%
	0.393
	22.22%
	1.810
	0.52
	

	Option 3
	2.227
	4.76%
	0.396
	23.06%
	1.835
	0.51
	

	Cat-2 baseline
	1.525
	
	0.093
	
	0.899
	0.81
	4

	Option 1
	1.610
	5.56%
	0.138
	48.33%
	1.036
	0.77
	

	Option 2
	1.621
	6.28%
	0.138
	48.65%
	1.044
	0.77
	

	Option 3
	1.626
	6.65%
	0.138
	48.65%
	1.053
	0.77
	


Table 4: Performance comparison for (4, 2, 2, 16) with 
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	Mean UE Throughput (bps/Hz)
	Mean UE Throughput Gain
	5% UE Throughput (bps/Hz)
	5% UE Throughput Gain
	50% UE Throughput (bps/Hz)
	Resource Utilization
	FTP load, λ (UEs/s/sector)

	Cat-2 baseline
	3.117
	
	0.857
	
	2.857
	0.27
	2

	Option 4
	3.224
	3.41%
	2.289
	7.61%
	3.077
	0.26
	

	Option 5
	3.264
	4.70%
	2.316
	10.40%
	3.150
	0.26
	

	Cat-2 baseline
	2.169
	
	0.322
	
	1.688
	0.55
	3

	Option 4
	2.289
	5.52%
	0.412
	28.00%
	1.861
	0.51
	

	Option 5
	2.316
	6.76%
	0.419
	30.30%
	1.869
	0.51
	

	Cat-2 baseline
	1.525
	
	0.093
	
	0.899
	0.81
	4

	Option 4
	1.645
	7.86%
	0.141
	51.45%
	1.070
	0.77
	

	Option 5
	1.651
	8.25%
	0.142
	52.96%
	1.072
	0.77
	


As shown in Tables 3, 4 and 5, proposed codebook designs provide performance gain over Cat-2 baseline. Specifically, up to 6.98% and 47.15% performance gain in terms of average and 5% UE throughout at high traffic load, respectively, is exhibited for the case of 
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 Also, average and 5% UE throughout gains at high traffic load are 6.65% and 48.65% respectively, for 
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 and 8.25% and 52.96%, respectively, for 
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 Comparing option 1, 2 and 3 for the case of 
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, we can observe that the exploiting vertical domain in short term feedback is important. Also, comparing Table 3 and 4, we have up to 1.91% and 5.88% performance gain for average and 5% UE throughout, respectively, at the expense of one additional feedback bit of W2. Among codebook options, codebook design based on the check pattern may be a good candidate for 2D antenna array due to its superior performance. 
Observation 1. Increasing feedback bits for both W1 and W2 is beneficial for performance enhancement. 
4. Conclusion
In this contribution, we propose codebook design options for (4, 2, 2, 16) and evaluate their performance. The observation and proposal based on the discussion above are given as follow:
Observation 1. Increasing feedback bits for both W1 and W2 is beneficial for performance enhancement. 
Proposal 1. Codebook design for 2D antenna array should be determined among the one of 5 options. 
______________________________________________________________________
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 Annex A: Simulation Parameters and Assumptions
	Scenarios 
	3D-UMi with ISD = 200m in 2GHz

	BS antenna configurations 
	Antenna elements config: 4 x 2 x 2 (+/-45), 0.5λ horizontal / 0.8 λ vertical antenna spacing

	MS antenna configurations 
	2 Rx X-pol (0/+90) 

	System bandwidth 
	10MHz (50RBs) 

	UE attachment 
	Based on RSRP (formula) from CRS port 0 

	Duplex
	FDD

	Network synchronization
	Synchronized

	UE distribution 
	Follows TR36.873

	UE speed
	3km/h

	Polarized antenna modeling 
	Model-2 from TR36.873 

	UE array orientation 
	ΩUT,α uniformly distributed on [0,360] degree, ΩUT,β = 90 degree, ΩUT,γ = 0 degree

	UE antenna pattern 
	Isotropic antenna gain pattern A’(θ’,ф’) = 1 

	Traffic model 
	FTP Model 1 with packet size 0.5 Mbytes (low ~20% RU, medium ~50% RU, high ~70%RU) [6]

	Scheduler 
	Frequency selective scheduling (multiple UEs per TTI allowed)

	Receiver 
	Non-ideal channel estimation and interference modeling, detailed guidelines according to Rel-12 [71-12] assumptions

	
	LMMSE-IRC receiver, detailed guidelines according to Rel-12 [71-12] assumptions

	CSI-RS, CRS 
	CSI-RS one-to-one mapping to TXRU, only CRS port 0 is modeled for UE attachment, CRS port 0 is associated with the first TXRU

	Hybrid ARQ 
	Maximum 4 transmissions 

	Feedback
	CQI, PMI and RI reporting triggered per 10ms

	
	Feedback delay is 5 ms 

	Overhead
	3 symbols for DL CCHs, 2 CRS ports and DM-RS with 12 REs per PRB 

	Transmission scheme
	TM10, single CSI process, dynamic SU/MU-MIMO with rank adaptation (no CoMP) 

	Wrapping method
	Geographical distance based

	Handover margin
	3 dB 

	Metrics
	Average UE throughput, 5% UE throughput.
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