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1
Introduction

In previous RAN1 meetings, companies proposed three potential superposition techniques to be investigated in MUST SI: 

· NOMA - superposes users with LTE constellations using amplitude weighting.
· SOMA - performs amplitude weighted superposition, forcing final super-constellation to be Gray labeled.
· REMA - performs superposition on existing LTE constellations, by allocating the symbol bits to different users.
Another way of categorizing the MUST schemes has been discussed with and without Gray mapping. In this paper we will discuss pros and cons of above superposition techniques. In addition, we study the impact of LTE system limited capacity on MUST gains.
2
Superposition coding gain under LTE capacity assumption
The large theoretical gains of superposition coding, shown in previous meeting in the form of the “arch” capacity/rate curves, were obtained with assumption of Shannon’s capacity. In [2] the rate curve degradation with 8% Tx EVM imperfection is shown. Herein we further studied the NOMA gain under assumption of LTE capacity. The LTE capacity is lower than Shannon capacity and can be approximated as an envelope of performance of MCS classes [6], with cut-off ceiling, due to the highest MCS and cut-off floor due to the lowest MCS supported by LTE.

The LTE capacity may be modelled as function of SINR [image: image2.png]
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where maximum rate with 64QAM and 90% coding rate is [image: image6.png]
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 and lower cut-off SINR [image: image10.png]Yis
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Figure 1 and Figure 2 show superposition gain of NOMA, with Shannon and LTE capacity. In case of OMA, resources are shared in orthogonal domain, i.e. time or frequency. In MUST, power is shared between users, where “marker” step is 0.05. Starting from x-axis first power split FAR/NEAR is 1/0 and the second power split is 0.95/0.05, etc. Comparing the LTE and Shannon capacities, the impact of [image: image14.png]
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 is visible. With Shannon capacity, NOMA is always better than OMA, however with LTE capacity, for this particular case, the difference between SU-MIMO CQIs of MUST UEs has to be at least 4dB and even with 8dB difference, the gains are reduced. This is due to [image: image18.png]


  in equation (1), which changes the shape of capacity curve.
Observation: 
· Theoretical gains of NOMA are significantly impacted by assumption of the real LTE system capacity. 
· The SU-MIMO CQI difference of at least 4dB between near- and far-UE is required to obtain gains in LTE system.
3 
Super-position schemes
The super-position techniques, such as NOMA, SOMA and REMA, have a lot of similarities as well as differences. Difference between NOMA and SOMA lies in mapping of bits to the symbols, where later one guarantees that super-constellation created by amplitude-weighted superposition of two constellations will be Gray-labelled. Figure 3 illustrates the benefit of Gray-labelling on mutual information (MI) between received signal and near- and far-UE bits. MI has been obtained by monte-carlo simulations according to [7], modified to bit level. It is obvious that near-UE equipped with R-ML will benefit from improved MI.  On the other side, the CWIC will not benefit from such an operation because far-UE MI is not impacted by Gray labelling and the near-UE will have in practice at least 4dB better channel quality than the far-UE, as discussed in previous section.
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Figure 3 The Mutual information (MI) for far-UE bits and near-UE bits with and without Gray labelling of QPSK+QPSK super-constellation
NOMA, unlike SOMA, may reuse legacy LTE implementation by processing two separately-coded layers as rank-2 transmission with two differently power-scaled versions of a single PMI. Contrary, SOMA needs an extra logic [3], and symbol generation needs to be done jointly. 
Observations:
· SOMA is beneficial for near-UE utilizing RML.
· Near-UE utilizing CWIC does not benefit from SOMA.

· NOMA may reuse existing LTE rank 2 implementation to generate MUST transmission.
· SOMA needs new implementation to generate MUST transmission.
The REMA technique proposed in [4] multiplexes users on the existing LTE modulation constellation, splitting the bits of each symbol between superposed users. With Gray-coded LTE constellations, there are 2, 3 and 4 bit-pairs of different reliability. It is envisioned that more reliable bits would be allocated to the far-UE. Furthermore, the bits should be split always in pairs, in order to be able to reuse existing TBS tables.  In [5] it is proposed to reuse existing constellations splitting bits always in pairs, resulting in 6 possibilities, each having a specific power splitting coefficient. Following this approach, it turns out that users, both in QPSK after power scaling, may be served only with power split 0.8/0.2.  Note that instantaneous optimal power ratio, in PF scheduler, is dependent on the current status of fairness metrics. As a consequence, with reduced amount of power-splits and dynamic NOMA/SU-MIMO switching, the NOMA utilization and thus its benefit may degrade. 

In order to increase the number of possible power-ratios, and at the same time preserve the benefits of using existing LTE constellation, eNB may allocate only a subset of all available bits in the existing LTE constellations.  Table 1 shows examples of allocating QPSK+QPSK superposition within 64QAM and 256QAM. Figure 5 and Figure 6 illustrate the super-constellation points in upper-right quadrant.  Note that more constellation splits are possible in addition to those shown in Table 1.
Table 1  An example of bit allocations within existing LTE 64QAM and 256QAM constellations

	LTE constellation
	F – far UE bits / N –near UE bits / padding bits
	Power split between Far/Near UE
	Implicit Power offset correction

	16QAM
	FFNN
	4.0
	1

	64QAM
	FFNN11
	2.77
	1.1905

	256QAM
	FFNN0000
	7.11
	0.8588
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Figure 5 The LTE 64QAM constellation including bit mappings
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Figure 6 The LTE 256QAM constellation including bit mappings
Support for legacy UEs in MUST

A far-UE utilizing a non-linear receiver would bring marginal benefits because of low power near-UE signal interference Therefore, poor-conditioned legacy LTE UEs could be considered as far-UEs in MUST. It should be noted that legacy UEs scheduled in QPSK do not need any additional signalling when scheduled in MUST. For higher order modulations, the power offset may be signalled to a legacy UE only as existing user-specific power offset PA over RRC. 
Figure 2 shows that MUST capacity gain grows with CQI difference between UEs. This means that the most of the gain can be expected when near-UE is in very good conditions and far-UE is in poor conditions, where QPSK would be typically scheduled.
Observations: 
· In SOMA the bits have to be split always in even numbers to be able to reuse existing TBS tables. 
· With limited set of power ratios, NOMA utilization decreases.

· More power splits can be obtained by allocation only a subset of bits from existing LTE constellations.

· Legacy UE scheduled as far-UE in QPSK does not require any MUST- related signalling assistance.

4
Conclusions

In this contribution we have been presenting views with respect to the superposed transmission. The following observations can be summarized.
Observations (LTE capacity): 
· Theoretical gains of NOMA are significantly impacted by assumption of the real LTE system capacity. 
· The SU-MIMO CQI difference of at least 4dB between near- and far-UE is required to obtain gains in LTE system.
Observations (Superposition schemes):

· SOMA is beneficial for near-UE utilizing RML.
· Near-UE utilizing CWIC does not benefit from SOMA.

· NOMA may reuse existing LTE rank2 implementation to generate MUST transmission.
· SOMA needs new implementation to generate MUST transmission.

· In SOMA the bits have to be split always in even numbers to be able to reuse existing TBS tables. 
· With limited set of power ratios, NOMA utilization decreases.

· More power splits can be obtained by allocation only a subset of bits from existing LTE constellations.

· Legacy UE scheduled as far-UE in QPSK does not require any MUST- related signalling assistance.
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Figure � SEQ Figure \* ARABIC �1� Superposition gain with Shannon capacity
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