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1
Introduction
In this contribution, according to the agreements and WF on NAICS from RAN1 74b [1][2], we provide TP on system-level modeling methodology for section 9 of TR36.866 [3]. In the companion contribution [4], we provide link-modeling parameters and the link-level simulation (LLS) results to verify the prediction accuracy of the proposed link abstraction method. The proposed link abstraction method is applied to system level simulations for R-ML receiver in the companion contributions [5] and [6].
2 Link Abstraction Method
Traditionally, signal-to-interference-plus-noise ratio (SINR) is used as a representative output to obtain an instantaneous BLER. Taking account of the fact that the coded bits transmitted by LTE MIMO-OFDM systems are spread over different subcarriers and spatial layers, link abstraction method of MIMO-OFDM systems can be composed of two stages, namely, the layer separation in the MIMO system and effective SINR mapping (ESM) in the OFDM block. First, at each OFDM subcarrier, we derive a post-processing SINR for each spatial layer of a MIMO system with SLML and then utilize mutual information per coded bit (MIB) metrics to convert a set of different post-processing SINRs, obtained over the frequency-selective coded OFDM system, into a single MIB. We note that this work is focused on the MIB metric rather than Shannon capacity and received bit information rate (RBIR). This MIB value is used to predict instantaneous BLER of MIMO-OFDM systems. Meanwhile, we use as the reference curves the BLER curves obtained with the modulation and coding schemes (MCSs) under additive white Gaussian noise (AWGN) channel.
2.1 System Model
In this section, we describe system model and the achievable MIB of ML-based NAICS receiver. To this end, we consider downlink MIMO-OFDM systems in multicell environments where two BSs equipped with 
[image: image1.wmf]t

N

 transmit antennas are transmitting their own messages, respectively, to the desired UEs equipped with 
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-dimensional complex received signal vector by the desired UE at the subcarrier
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where 
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denotes an effective channel matrix from BS 
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 to the desired UE, comprising distance dependent path loss, the actual channel matrix and precoding matrix, 
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denotes the additive noise vector whose elements are independent and identically-distributed (i.i.d.) complex Gaussian with variance 
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 represents the total number of coded subcarriers.
Under our assumptions, the channel transition probability is given by
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Let 
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Finally, we arrive at the MIB of 
[image: image44.wmf]v

-th layer at the 
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The equations (3) and (4) will generate the exact MIB for each subcarrier k. However, the main problem with this approach is that when evaluating mutual information values in (3), the number of search candidates grows exponentially with the number of transmit antennas and/or bits per symbol, which is prohibitively complex for practical use in system-level simulation (SLS). In the following sections, we consider a simple and computationally efficient approach for estimating the MIB of each spatial layer in MIMO systems.

2.2 Layer separation
In this section, as the first stage of link performance abstraction of MIMO-OFDM systems, we present a new approach to the layer separation that derives a post-processing SINR of each spatial layer for MIMO systems with symbol-level maximum-likelihood (SLML) detection. 
The post-processing SINR of each spatial layer in MIMO systems is dependent on the used detection algorithm. In the case of MIMO systems with linear receivers such as minimum mean-squared error (MMSE) and zero-forcing (ZF) receivers, the post-processing SINR is readily given by the output SINR. However, when it comes to the ML receiver, it is not straightforward to calculate the post-processing SINR since the ML detection(MLD)-based demodulation is a nonlinear process. We consider the layer separation method proposed in [8], where the post-MLD SINR is calculated as a function of the post-MMSE receiver SINR and the genie-aided interference-free (IF) receiver SINR. 
As to unbiased MMSE receiver, the post-processing SINR of the 
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where 
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 denotes the mean-squared error (MSE), for the v-th layer, given by

[image: image51.wmf]v

v

k

H

k

n

N

v

k

t

,

1

2

2

,

1

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

=

-

H

H

I

s

s

,       (6)
where
[image: image52.wmf][

]

2

,

k

1

k

H

H

H

=

k

, 
[image: image53.wmf]r

I

 denotes an identity matrix of size 
[image: image54.wmf]r

, and 
[image: image55.wmf][

]

v

v

,

 represents the 
[image: image56.wmf]n

-th diagonal element of a matrix.
In comparison, the post-MLD SINR can be upper-bounded by the genie-aided IF receiver and the corresponding SINR of the layer 
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 can be represented as
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From the definitions from (5) and (7), the post-MLD SINR, denoted by 
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where the function
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denotes the MIB mapping function of SNR 
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 for the involved modulation level 
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 under the assumption of AWGN channel. Unlike the metric of channel capacity, the MIB is the constellation-constrained capacity which is dependent on the signal constellation and the bit labeling. An efficient approach for MIB computation is developed in [9] by approximating the probability density function (PDF) of LLR with a mixture of Gaussian PDFs. In this work, we focus on the MIB metric.
As mentioned earlier, it is not straightforward to compute the post-processing SINR in the case of MIMO systems using MLD. Instead, the post-MLD MIB, denoted by
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where
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and
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The original approach proposed in [8] assumed the combining parameter
[image: image76.wmf]b

to be fixed for the involved MCS set. It has been shown in [10] that this original approach based on the fixed beta works well in all the interference conditions except the very strong interference case. The reason for this can be explained briefly as follows. The information theory says that very strong interference is equivalent to no interference. This implies that for the conventional approach to work properly, the lower bound should increase in stronger interference condition because the upper bound is fixed from the definition. However, the actual lower bound given by the MMSE receiver decreases to zero with increasing interference power. In the rest of this section, we present a new adaptive approach for overcoming this problem.

The basic idea is to exploit the probabilistic behavior of the optimal combining parameter 
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 over interference-to-signal ratio (ISR). For instance, we apply Monte-Carlo simulations to obtain the exact MIB 
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Figure 1 : Behavior of exact MIB over Interference-to-Signal Ratio (ISR)
Figure 1 shows that while the exact 
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 especially in high ISR regimes. The observation suggests that the combining parameter needs to be adaptively chosen according to the instantaneous nterference-to-signal (ISR) ratio as follows:
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Note that the combining parameter 
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 and in this contribution, we use the term interference-to-signal ratio (ISR) instead of signal-to-interference ratio (SIR) to emphasize that the achievable MIB of MLD-based NAICS receiver increases proportionally to the ISR rather than the SIR.
In order to characterize the probabilistic behavior of optimal combining parameter 
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Figure 2 : Probabilistic Behavior of Optimal Combining parameter over the ISR
target BLER in the AWGN reference curve of the involved 
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In Figure 2, we can see that the optimal 
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where as depicted in the figure, link abstraction model parameters 
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We notice that the simplification of modeling
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2.3 Effective SINR mapping (ESM) 
As one codeword in a coded OFDM system is transmitted over the subcarriers which have different channel gains, we require ESM to map the post-processing MIB values across the subcarriers into a single SINR value, which is then used to estimate instantaneous BLER of the link by looking up the AWGN reference curve. Link performance abstraction of the 
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Then, the output MMIB 
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Finally, the estimate of BLER can be obtained by mapping 
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where 
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 is the mapping function which is specific to the involved MCS and code length. The mapping functions need to be acquired in advance from LLS over AWGN Channel for the all specific conditions of interest.
It is worthy of noting that we can combine the aforementioned two functions in (16) and (17) as a direct MMIB to BLER relationship as follows [9]
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In summary, the proposed link abstraction method needs only the table of three parameters
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