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1 Introduction

In this contribution we consider precoding codebook design for the 4TX downlink and detail a codebook

structure that is suitable for both the uniform linear array (ULA) and the cross-pole antenna configurations.

The codebook structure is derived using fundamental properties of the spatial correlation matrices under

the ULA and cross-pole antenna configurations. Each precoding codeword is derived as the product of two

matrices, as in the 8 TX case. In the following, unless otherwise mentioned we will assume the co-polarized

antennas to be closely spaced.

2 Uniform Linear Array

We have the following observations for the uniform linear array (ULA) transmit antenna configuration.

Consider a system with N co-polarized transmit antennas and let C denote the transmit spatial correlation

matrix. Let us define J to be the matrix which has zeros everywhere except on the cross diagonal elements,

i.e., J = [Jm,n] where

Jm,n =





1, n = N −m + 1

0, otherwise
(1)

A vector is said to be Hermitian if

x̄ = Jx, (2)

where x̄ denotes the conjugate of x. We offer the following set of properties:

Lemma 1 The matrix C is a Hermitian Toeplitz matrix, i.e., C satisfies

C̄ = JCJ, (3)
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where C̄ denotes the conjugate of C.

Lemma 2 The eigenspace of any Hermitian Toeplitz matrix can be completely described by Hermitian vec-

tors. In other words, given a Hermitian Toeplitz matrix A and with x being its eigenvector such that

Ax = λx, then ∃ y such that ȳ = Jy with

Ay = λy (4)

Lemma 3 Suppose λ is an eigenvalue of a Hermitian Toeplitz matrix A with algebraic multiplicity one.

Then if x is an eigenvector such that Ax = λx, we must have

Jx = exp(jδ)x̄. (5)

for some δ ∈ [0, 2π) and where j =
√−1.

A simplified model for the correlation matrix is the exponential correlation model, which is discussed further

in the Appendix, and is given by

C = [Cm,n]Nm,n=1, Cm,n = ρ|m−n| exp(jθ(m− n)), m, n ∈ {1, · · · , N}, (6)

where ρ ∈ [0, 1] & θ ∈ [0, 2π).

2.1 4 TX ULA

In this section, we consider the case of N = 4 co-polarized transmit antennas. First, note that without loss

of generality, we can impose the following structure on each eigenvector x of the spatial correlation matrix

C,

x = [a1, a2 exp(jθ2), a3 exp(jθ3), a4 exp(jθ4)]T , (7)

where a1, a2, a3, a4 ∈ IR+. Recalling that the matrix C must be a Hermitian Toeplitz matrix and invoking

Lemmas 2 and 3, we can deduce that we must have

a1 = a4, a2 = a3

θ2 + θ3 = θ4. (8)
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Then, consider any two eigen-vectors of the form in (8) given by

x = [a, b exp(jθ2), b exp(jθ3), a exp(j(θ2 + θ3))]T (9)

y = [c, d exp(jγ2), d exp(jγ3), c exp(j(γ2 + γ3))]T , (10)

where a, b, c, d ∈ IR+. Then, a sufficient condition to enforce orthogonality among these two eigenvectors is

to ensure that

θ2 + θ3 = ±π + γ2 + γ3

θ2 − θ3 = ±π + γ2 − γ3

which can be simplified to

θ2 = tπ + γ2, t ∈ {0,±1}

θ3 = ±(1− |t|)π + γ3. (11)

We remark that (11) is not necessary but works for all possible values of the scalars a, b, c, d ∈ IR+.

3 Polarized Setup

Suppose the transmitter has 2N cross-polarized antennas comprising of a pair of N co-polarized antennas

each. Then the correlation matrix of each one of these two co-polarized sets is denoted by C which is

Hermitian and Toeplitz. The overall 2N × 2N correlation matrix C̃ can be written as

C̃ =




1 α

ᾱ 1


⊗C (12)

where ⊗ denotes the kronecker product and α ∈ IC : |α| ∈ [0, 1]. It can be shown that any eigenvector ỹ of

C̃ has the form

ỹ = y ⊗ x (13)
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where y ∈ IC2×1 is an eigenvector of the matrix




1 α

ᾱ 1


 and x is an eigenvector of C. Furthermore, the

two eigenvectors of the matrix




1 α

ᾱ 1


 are exp(jβ)√

2
[1 α

|α| ]
T and exp(jβ)√

2
[1 − α

|α| ]
T , where (.)T denotes the

transpose operation and the phase term exp(jβ) can be ignored without loss of optimality. The two eigen-

values are 1 ± |α|. Note that the matrix




1 α

ᾱ 1


 also models the correlation matrix of the 2 transmit

ULA.

4 Codebook Construction in product form

We next discuss a codebook construction in which each codeword is derived as a matrix product. We use the

codebook designed in [1] (by downsampling the 8TX codebook) as the base and expand it while conforming

to the principles outlined in Sections 2 and 3. Let wn = [1 exp(j2πn/16)]T for n = 0, · · · , 15. We define

the inner (wideband) codebook as

C(1) =








A(q)¯W(1)(k) 0

0 B(q)¯W(1)(k)


 :

W(1)(k) = [w2k mod 16,w2k+1 mod 16,w2k+2 mod 16,w2k+3 mod 16], k = 0, · · · , 7; q = 1, · · · , Q
}

, (14)

where ¯ denotes Hadamard product and

A(q) =




1 0

0 exp(j2π dq)







aq aq bq bq

bq bq aq aq




B(q) = exp(j2πγq)




1 0

0 exp(j2π dq)







bq bq aq aq

aq aq bq bq


 , q = 1, · · · , Q, (15)

where γq, aq, bq, dq ∈ [0, 1] & a2
q + b2

q = 1/2 ∀ q. The rank-1 outer codebook is defined as

C(2)
1 =








y

y


 ,




y

−y


 ,




y

jy


 ,




y

−jy








(16)

y = {e1, e2, e3, e4}, (17)
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where ei denotes the 4× 1 column selection vector. The outer rank-2 codebook is defined as

C(2)
2 =








y1 y2

y1 −y2


 ,




y1 y2

jy1 −jy2








, (18)

(y1,y2) = {(e1, e1), (e2, e2), (e3, e3), (e4, e4), (e1, e3), (e1, e4), (e2, e3), (e2, e4)} (19)

We note that one choice of γq, dq is to set dq = γq/2 = θq for some configurable scalars {θq ∈ [0, 1]}. Under

this choice, we next describe a way of determining a set of triplets {θq, aq, bq}Q
q=1. From the discussion in

Appendix 6 using the exponential correlation model, we relate exp(j2πθ) = ā
|a| so that a good choice is

to assume that the (un-quantized) θ is uniformly distributed in [0, 1). Thus, a good strategy to obtain a

finite set Θ = {θ} is via uniform quantization of [0, 1) using the given number of bits. Considering now the

selection of aq, bq, one possibility is to relate them to the variables p, q discussed in Appendix 6. Accordingly,

a finite set of values for the correlation magnitude parameter ρ = |a| can be selected from which a set of

vectors S = {[p, q]} can be obtained after invoking the formulas in Appendix 6. Then, the set of triplets

{θq, aq, bq} can be defined as the Cartesian product Θ⊗ S, where we have used ⊗ to denote the Cartesian

product, whose size is Q = |Θ||S|.
The rank-3 and rank-4 codebooks can be fixed to the legacy (Householder) rank-3 and rank-4 codebooks.

In addition, the entire legacy codebook can be included as a subset.

We note that not all codeword matrices in the aforementioned codebook satisfy the constant magnitude

property. However, the codebook has the desirable property that for each rank and for each choice of the

inner (wideband) precoder, the expected value of each row norm square (i.e., sum of the magnitude squares

of elements in that row) of the final selected precoder matrix is identical, where the expectation is computed

over the set of outer (subband) precoders assuming that they are chosen equi-probably.

5 Conclusions

In this contribution we detailed a codebook structure and presented an embodiment which conforms to

the matrix product form. This structure is motivated by fundamental properties of the spatial correlation

matrix and makes codebook optimization feasible. However, an enhanced codebook must be considered only

if sufficient gain is observed over the existing Householder codebook. In addition, it is better to focus on

such enhancement after investigating related issues in the 3D MIMO channel.
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6 Appendix: 4 TX ULA with the exponential correlation model

Next, we consider the case where we further specialize the correlation matrix to be

C =




1 a a2 a3

b 1 a a2

b2 b 1 a

b3 b2 b 1




, (20)

where a ∈ IC such that |a| ≤ 1 and b = ā. Note that the matrix C is Hermitian Toeplitz and is also

completely characterized by one complex scalar. Thus its eigenvectors can be expected to have more

structure in addition to that possessed by an eigenvector of a general Hermitian Toeplitz matrix. We will

also exploit this additional structure in the following. The matrix J for this case can be written as,

J =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




We first consider the case |a| < 1. In this case, the eigen-vectors of any matrix of the form in (20) have

the following properties. Consider any matrix C of the form in (20) and let

C = EΛE† (21)

denote its eigen-decomposition where (.)† denotes the conjugate transpose operation and Λ = diag{λ1, λ2, λ3, λ4}
with λ1 ≥ λ2 ≥ λ3 ≥ λ4 denoting the four real-valued eigenvalues. Then,

E = Dp(H¯ S) (22)
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where ¯ denotes the Hadamard product and Dp is a diagonal matrix of the form

Dp = diag{1, exp(jγ), exp(2jγ), exp(3jγ)} (23)

for some γ ∈ [0, 2π). The matrix S has the following structure

S =




p r q s

q s p r

q s p r

p r q s




(24)

for some real positive scalars p, q, r, s such that q =
√

1/2− p2 and r =
√

1/2− s2. The matrix H is a 4× 4

real-valued Hadamard matrix, i.e., columns of H are mutually orthogonal and all its elements belong to the

set {±1}. Then, since each column of E must satisfy the condition in (5), each column of H = [h1, · · ·h4]

must satisfy the following conditions.

h1ih4i = h2ih3i, ∀ i = 1, 2, 3, 4. (25)

Also, since E must be a unitary matrix, H must also satisfy the following additional conditions.

h11h12 = −h41h42, h21h22 = −h31h32; h11h14 = −h41h44, h21h24 = −h31h34

h22h23 = −h32h33, h12h13 = −h42h43;

An important example H is the following:

H =




1 1 −1 1

1 1 1 −1

1 −1 1 1

1 −1 −1 −1




Using H given above and recalling that ρ = |a|, we can derive formulas that yield the scalars p, q, r, s as

follows. First we have that exp(jγ) = ā
|a| . Substituting this in (22) yields after some manipulations that

q =
ρ(1 + ρ)√

2[ρ2(1 + ρ)2 + (ϑ− ρ)2]
, (26)
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where ϑ = ρ+ρ3+
√

ρ2(1+ρ2)2+4ρ2(1+2ρ)

2 and p =
√

1/2− q2. Note that in the special case when ρ = 0 the

correlation matrix C reduces to the identity matrix so that we can chose p, q, r, s arbitrarily (subject to the

respective norm constraints). Further, for ρ < 1, we can determine that r =
√

ζ+ρ
2(2ζ+ρ+ρ3)

with s =
√

1/2− r2

where ζ = −ρ−ρ3+
√

(ρ−ρ3)2+4ρ2(1−ρ)2

2 .

On the other hand when ρ = 1 we note that the matrix C is a rank-1 matrix that is given by

C =




1

b

b2

b3




[
1 a a2 a3

]
. (27)

It can be then shown that the eigen-vector of C corresponding to its one non-zero eigenvalue is of the form

[1, exp(jγ), exp(2jγ), exp(3jγ)]T /2 (28)

where exp(jγ) = ā
|a| so that p = q = 1/2. The choice of r, s can be arbitrary (subject to the norm constraint)

since the associated eigen-value is zero.
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