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1 Introduction
In RAN#58, New Study Item Proposal for “Small Cell Enhancements for E-UTRA and E-UTRAN – Physical-layer Aspects” was approved. The objective of this study item is to identify potential enhancements to improve the spectrum efficiency as well as efficient small cell deployment and operation in order to meet the requirements targeted for small cell enhancements in the identified scenarios in TR36.932, and evaluate the corresponding gain, standardization impact and complexity. The study shall focus on the following areas [1]:
· Define the channel characteristics of the small cell deployments and the UE mobility scenarios identified in TR36.932, as well as the corresponding evaluation methodology and metrics. 

· Study potential enhancements to improve the spectrum efficiency, i.e. achievable user throughput in typical coverage situations and with typical terminal configurations, for small cell deployments, including

· Introduction of a higher order modulation scheme (e.g. 256 QAM) for the downlink.

· Enhancements and overhead reduction for UE-specific reference signals and control signaling to better match the scheduling and feedback in time and/or frequency to the channel characteristics of small cells with low UE mobility, in downlink and uplink based on existing channels and signals. 

· Study the mechanisms to ensure efficient operation of a small cell layer composed of small cell clusters. This includes 
· Mechanisms for interference avoidance and coordination among small cells adapting to varying traffic and the need for enhanced interference measurements, focusing on multi-carrier deployments in the small cell layer and dynamic on/off switching of small cells.

· Mechanisms for efficient discovery of small cells and their configuration. 

· Physical layer study and evaluation for small cell enhancement higher-layer aspects, in particular concerning the benefits of mobility enhancements and dual connectivity to macro and small cell layers and for which scenarios such enhancements are feasible and beneficial.
In this document, we discuss the performance of supporting 256QAM for spectral efficiency enhancement. 
2 Discussion and evaluations
2.1 256QAM
In small cell deployment, high DL SINR is expected especially in sparse small cell deployments where the inter-cell interference among cells is not significant. For example, in the multiple outdoor pico cells scenario as used in previous RAN1 evaluations, about 30% of UEs’ DL SINR is beyond 25dB as shown in Figure 1. Those UEs are likely to adopt the peak spectrum efficiency (as shown in Figure 2) currently supported. To further improve the spectral efficiency, higher order modulation can be considered for UEs with high DL geometry.
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Figure 1: DL geometry for multiple outdoor pico cells
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Figure 2: Spectrum efficiency of the highest MCS level (64QAM withcoding rate 0.9258)
256QAM is proposed to increase spectral efficiency in study item. The corresponding constellation in FigureA-1 is considered during the evaluations in this contribution. For 256QAM, one constellation point contains 8-bit information and ideally provides 33% gain on spectral efficiency compared with 64QAM. 
2.2 Evaluation results
In this section, link-level evaluations on 256QAM with ideal EVM are provided. Simulation assumptions are listed in Table A-2. In Figure 3, the highest MCS level (64QAM with coding rate of 0.9258) supported by the current specification is referenced and 256QAM with different code rates are also shown.
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Figure 3: Spectrum efficiency of 256QAM and 64QAM
· Observations
· In high SNR region (roughly higher than 18dB), 256 QAM with high code rate can provide larger spectral efficiency than the highest MCS in the current specification.
· For SNR above 30dB, 256QAM with code rate of 0.9258 provides more than 30% gain on spectral efficiency over the highest MCS level in current specification.
2.3 Non-ideal EVM 

The evaluations in section 2.2 assume ideal EVM. However, non-ideal EVM is inevitable and hence it is necessary to consider the impact of EVM when discussing the support the 256QAM. Figure 4 shows the relation between the equivalent SNR and the receive SNR considering non-ideal EVM. 
· Observations

· With 8% EVM as currently specified for 64QAM, the equivalent SNR is roughly 22dB, at which the gain of 256QAM is below 5%.

· To attain higher gain from 256QAM, it is necessary to specify more stringent EVM requirement for 256QAM. The EVM requirement for 256QAM shall be determined by RAN4.

· Suggestion
· Non-ideal EVM should be considered in further evaluation on 256QAM and RAN4 shall provide the possible EVM requirement for 256QAM.
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Figure 4: Equivalent SNR with non-ideal EVM
3 Conclusions
This contribution presents initial evaluation results for 256QAM. It is observed that 256QAM can improve the spectral efficiency in small cell deployments. The gain of 256QAM depends on the corresponding EVM requirement. It is therefore proposed that non-ideal EVM should be considered in further evaluation on 256QAM and RAN4 shall provide the possible EVM requirement for 256QAM
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5 Appendix

5.1 Simulation assumption
Table A-1: simulation assumption for multiple outdoor pico cells
	Parameter
	Assumption

	Deployment scenario
	19*3 Macro, 4 picos per Macro

	Maximum BS Tx power
	24dBm

	Carrier frequency
	2 GHz

	System bandwidth
	10MHz

	Pico deployment
	single cell with a radius of 40 m

	Pico antenna gain
	5dBi

	Pico antenna pattern
	2D,Omni-directional

	Pico noise figure
	13dB

	UE antenna gain
	0dBi

	UE noise figure
	9dB

	UE power class
	23dBm(200mW)

	Minimum distance between UE and pico
	10m

	Number of UE per pico cell
	10

	Shadowing standard deviation
	3dB for LOS and 4dB for NLOS

	Pathloss
	PLLOS(R)=103.8+20.9log10(R)

PLNLOS(R)=145.4+37.5log10(R)  for 2GHz, R in km

Case 1: 
Prob(R)=0.5-min(0.5,5exp(-0.156/R))+min(0.5,5exp(-R/0.03))


Table A-2: simulation assumptions for link level evaluation
	Number of Antennae
	4×2, low correlated antenna

	Carrier Frequency
	2.0 GHz

	system bandwidth
	5MHz, 25PRBs

	DL RS configuration
	4-port CSI-RS with 80ms period

2-port CRS

2-port DMRS

	Channel Model
	EPA, 3km/h 

	UL SRS
	Ideal wideband SRS

	Rank adaptation 
	OFF (fixed rank=2)

	Precoding granularity 
	25PRBs

	Precoder generation
	SVD based on uplink SRS

	Link adaptation
	OFF

{64QAM, coding rate 0.9258}, {256QAM, coding rate 2/3},

{256QAM, coding rate 0.8}, {256QAM, coding rate 0.9258}

	MIMO detection algorithm
	MMSE

	Channel estimation for DRS
	Per-PRB 2D-MMSE filter

	Channel Coding
	Turbo code

	HARQ
	ON


5.2 256QAM constellation
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Figure A-1: 256QAM constellation
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