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1. Introduction
A study item on provision of low cost MTC UEs was approved at the RAN#53 plenary meeting. At RAN1#67 meeting, [1] provided an evaluation methodology for MTC LTE UE costs, which consist of RF module, ADC/DAC, and Baseband module. The RF module consists of an RF transceiver, power amplifier, filter, and duplexer. However, in order to reduce the cost of RF transceiver some lower-cost components could be used. Among major components, lower-cost mixer and local oscillator in RF transceiver induce worse I/Q-imbalance and frequency error. And lower-cost low pass filters induce worse timing skews of I-path and Q-path. Consequently, timing skews joint I/Q-imbalance and frequency error due to lower-cost local oscillator, mixers, and low pass filters may degrade system performance. Therefore, this contribution discusses impacts of timing skews joint I/Q-imbalance and frequency error to RF transceiver and filter cost reduction for low-cost MTC UE.

2. Timing skews joint I/Q-imbalance and frequency error
Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM) is used in LTE standard over frequency-selective fading. However, RF distortions will cause serious degradations of performance in most OFDM-based systems. Especially, imbalance of local oscillator (LO) between transmitted antenna and received antenna will result in frequency error, making time-domain signal sampled non-coherent, and the mismatch of gains, phases and filters between in-phase (I) and quadrature-phase (Q), namely timing skews joint I/Q-imbalance, make time-domain signal skew and frequency-domain gain imbalance. Then an OFDM direct-conversion receiver recovers datum difficultly. Therefore, several schemes [4]-[14] have been proposed to compensate for such distortions, as follows. Data-aided (DA) methods [4], [5] use special pilots and training symbols. Nondata-aided (NDA) methods [6]-[9], only utilize transmitted data without any other additional information. Adaptive filter-based methods [10]-[12] employ the received data to handle estimation and a high Image Rejection Ratio (IRR) is certified after compensation. Some blind I/Q-imbalance estimators [13], [14] that rely on signal statistics have also been adopted to achieve estimation and compensation. Introducing the frequency error phenomenon into the system will increase the estimation error. Fig. 1 displays the RF model [4], [9], [14] which can be characterized by amplitude mismatch g=(1+ ɛ), phase error  θ, two mismatched LPFs (
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Fig 1: The model of timing skews joint I/Q-imbalance and frequency error in OFDM systems

Timing skews, caused by filters mismatch, results in the non-coherent I-path signal with Q-path signal, plotted in Figs. 2(a) and 2(b).
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Fig. 2: Timing skews between I path and Q path: (a) skewed by 1 sample period; and (b) skewed by 1/2 sample period.

To analyze the effect of timing skews joint I/Q-imbalance and frequency error, after the received signal goes through mixers, two inconsistent LPFs, and ADCs, the time-domain signal can be written as follow. 
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In which, t is the time-domain index, “
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 denotes the additive white Gaussian noise (AWGN). The frequency-domain baseband signal 
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where 
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 is the image aliasing effect caused by I/Q distortions. k is the frequency-domain index. 
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  [15]. For simplification without lost generality, such two LPFs can be modeled by FIR filter [4]. For example, the filter mismatch can be modeled by the worst case [4] of 
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. When timing skews joint I/Q-imbalance happens, the channel frequency response (CFR) will suffer severe degradation displayed in Figs. 3(a) and 3(b). 
In [9] provides an estimation method using the characteristic of cross-ratio imparity (CRI). The CRI can be only obtained by symmetric pilots. Since timing skews joint I/Q-imbalance causes I/Q-imbalance varying per carrier, it implies the CRI is varying. Therefore, using uniform coverage pilots can estimate variance of CRI. Finally, the interpolation is used to smooth all CRI variance. 
 In LTE Rel-10, the PSS and SSS only exits in the center 62 carriers around DC which are insufficient for estimating the timing skews joint I/Q-imbalance effect for wider bandwidth. And in LTE Rel-10 the positions of RS in the symbol are not symmetric, which means that it is hardly used for tracking the timing skews joint I/Q-imbalance effect. Besides, if timing skews joint I/Q-imbalance is combined frequency error, the data will become undecided.
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Fig. 3: Amplitude and angle of CFR with 1-dB gain error, 15° phase error and the worst timing skews: (a) amplitude; and (b) angle.
3. Conclusion
Lower-cost mixer, local oscillator, and low pass filters in RF module will induce timing skews joint I/Q-imbalance and frequency error. I/Q-imbalance cause signal distortion by image aliasing and timing skews cause the image aliasing ratio varying per carrier. Besides, if timing skews joint I/Q-imbalance is combined frequency error, the data will become undecided. It could be estimated and compensated to reduce the distortion by symmetric and partial coverage pilots. However, in LTE Rel-10 the PSS and SSS are only allocated in the center 62 carriers around DC, which are insufficient for estimating the timing skews joint I/Q-imbalance effect for wider bandwidth. And in LTE Rel-10 the positions of RS in the symbol are not symmetric, which means that RS is hardly used for tracking the timing skews joint I/Q-imbalance effect.
If there is no change to Rel-10 PHY structure, we propose:
Proposal 1: Due to limited PSS and SSS coverage ratio, 1.4-MHz bandwidth is preferred for low cost MTC.
If there is new Rel-11 PHY structure, we propose:
Proposal 2: Design new symmetric pilots in low cost MTC for wider bandwidth.
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