3GPP TSG RAN WG1 Meeting #63bis
 R1-110282
Dublin, Ireland, 17-21 January 2010
Source:
Research In Motion, UK Limited
Title:
Large ACK/NACK bit ordering in case of > 11 bits
Agenda Item:
6.2.1
Document for:
Discussion and Decision
1. Introduction
It was agreed in previous meetings that PUCCH Format 3 will support ACK/NACK payloads of size n > 11 bits for TDD. Furthermore the encoder consists of two parallel Rel-8 RM(32,O) encoders each supporting half of the ACK/NACK payload [2]. However, an open topic is the ordering of ACK/NACK bits at the input to the encoder structure. This contribution considers possible approaches to ordering the ACK/NACK bits before parallel encoding.
2. Discussion
ACK/NACK payloads are comprised of the concatenation of a combination of single ACK/NACK bits and paired ACK/NACK bits, corresponding to CCs configured for single and dual transport block transmission, respectively. Acknowledgements (ACKs) are indicated by 1 and negative acknowledgements (NACKs) are indicated by 0. Additionally, in the case when no PDCCH transmission is scheduled on a CC, a discontinuous transmission (DTX) occurs and is indicated by 0 or a NACK in the corresponding position(s) in the ACK/NACK payload. A characteristic of the approach proposed in this contribution is the eNB can use its knowledge of which CCs have no PDSCH scheduled to reduce the pool of potential messages and hence codewords under consideration during decoding resulting both in an improvement in link performance and reduction in complexity.
According to the agreement in [2], for payloads greater than 11 bits, these ACK/NACK bits would be partitioned into two components and encoded with parallel Rel-8 RM(32,O) encoders.
However, it is not yet decided how to order the ACK/NACK bits before encoding. In FDD bits are ordered according to the component carrier cell index however in TDD the time dimension also needs consideration. Assuming ACK/NACK bits, two possible options that can be considered are:
Option 1: Bits are ordered in the time domain first, then in the component carrier domain second..

[image: image1.emf]Rel-8 RM(32,0) with 8bit

trunctation

Rel-8 RM(32,0) with 8bit

trunctation

Segmentation

A11,B11,A12,B12,A13,B13,A14,B14

A21,B21,A22,B22,A23,B23,A24,B24

Time/CC ordering

Figure 1 - Option 1 ACK/NACK payload ordering and encoding
Option 2: Bits are ordered in the time domain first, then in the component carrier domain second. Even bits from this first reordering are relocated to A/N payload positions 0,1,…,ceil(N/2)-1, while odd bits from the first reordering are relocated to A/N payload positions ceil(N/2),…,N-1.

[image: image2.emf]Rel-8 RM(32,0) with 8bit

trunctation

Rel-8 RM(32,0) with 8bit

trunctation

Segmentation

Time/CC ordering + even/odd ordering

A11,A12,A13,A14,A21,A22,A23,A24

B11,B12,B13,B14,B21,B22,B23,B24

Figure 2: Option 2 ACK/NACK payload ordering and encoding.
There would be no big difference between the above two options from UE operation point of view. However, Option 2 provides some benefit in performance since the ACK/NACK bits from a CC configured for dual transport block transmission can be distributed over the two RM codes.

In greater detail, since the number of ACK/NACK bits are determined based on the number of configured CCs, the UE transmits DTX (equivalently NACK) when a PDSCH is not scheduled on a CC. Since the eNB has the same understanding of which ACK/NACK payload bits are in fact a DTX, it does not need to consider the basis vectors corresponding to DTX’s bits and need only consider a subcode of the full codebook during decoding. Different subcodes can have markedly different properties. In particular, the minimum distance of a subcode, while always greater than or equal to that of the parent code, can vary from subcode to subcode. Since minimum distance is the principal indicator of a code’s error-correcting performance, maximizing the minimum distance of the subcodes induced by the presence of DTX bits is a priority.
One way to improve performance is to distribute DTX bits between the two Reed-Muller encoders as equally as possible. In this way, both subcodes will have roughly the same size, giving the best possible chance for both to enjoy a minimum distance improvement over their parent code.
An advantage of the distribution described in Option 2 is that in the case a CC supporting dual transport block transmission has no scheduled PDSCH, the two resulting DTX bits will be evenly distributed between the two RM encoders.
[image: image3.png]
Figure 3: Performance of Option 1 and Option 2 assuming only PDSCH corresponding to the first ACK/NACK pair is scheduled.
Performance comparisons of Option 1 and Option 2 are shown in Figure 3, Figure 4 Figure 5, and Figure 6 For simplicity we assume the payload consist of 10 pairs of ACK/NACK bits resulting in a total payload size of 20 ACK/NACK bits. A corresponding use scenario would be a TDD system operating with an uplink to downlink ratio of 2:1 and in which a UE is configured to receive on up to 5CCs with each CC also configured to support dual transport block MIMO transmission. Detailed simulation assumptions are provided in Annex A.
In Figure 3 , it is assumed that only PDSCH corresponding to the first ACK/NACK pair is scheduled, that is b(0) and b(1) are signaled with ACK/NACK information while b(2),… b(20) are fixed at 0 due to DTX. In this particular case, the even-odd bit distributions of Option 2 result in two subcodes whose minimum distances are twice that of the parent code. Hence, a coding gain of 3 dB is observed.
Figure 4Figure 5, Figure 6 and provide examples of more common use cases where the scheduled ACK/NACK pairs change on a frame-wise basis. In Figure 4 Figure 4, 2 ACK/NACK pairs are randomly selected for scheduling in each simulated frame, while in , Figure 5 and Figure 62 pairs, 5 pairs and 8 pairs of ACK/NACK bits, respectively are located randomly for scheduling. As before, coding gains are observed for Option 2 resulting in link performance gains of 0.9dB , 0.9dB and .6dB, respectively as summarized in Table 1. Since it is assumed here that ACK/NACK pairs are randomly scheduled, the gain here comes from evenly distributing the ACK/NACK bits within each pair across the two RM encoders.
We note in passing that Option 2 also provides a decrease in average decoding complexity. For example, consider the case where b(0),… ,b(3) correspond to ACK/NACK bits on scheduled CCs. In option 1 the decoder must consider 16=2^4 codewords all from the first RM code while with option 2 the decoder considers 8=2x2^2 codewords, half from the first RM code and half from the second.

Furthermore in [3] the concept of minimizing ambiguity in ACK/NACK bit positions during cell reconfiguration was introduced. Although the initial focus of Option 2 was improvement in link performance both before and during cell reconfiguration, investigation on the example scenarios heighted in [3] has revealed Option 2 also provides the same benefit of minimizing ACK/NACK bit position ambiguity during cell reconfiguration as the method proposed in [3].
[image: image4.png]
Figure 4: Performance of Option 1 and Option 2 assuming PDSCH corresponding to 2 ACK/NACK pairs are scheduled.

[image: image5.png]
Figure 5: Performance of Option 1 and Option 2 assuming PDSCH corresponding to 5 ACK/NACK pairs are scheduled.
[image: image6.png]
Figure 6 : Performance of Option 1 and Option 2 assuming PDSCH corresponding to 8 ACK/NACK pairs are scheduled.
[image: image7.emf]Number of

scheduled A/N pairs

258

Option1-8.1-4.3-2.6

Option2-9.0-5.2-3.2

Improvement0.90.90.6

Table 1 - Required SNR (dB) at 0.1% BER
3. Conclusions

In this contribution, for large ACK/NACK payloads in TDD, we have investigated two approaches for ACK/NACK ordering before parallel encoding and observed that option 2 is more beneficial since:
· It decreases bit error rates by improving the distance properties of the induced subcodes;
· This ordering of A/N payload provides an beneficial arrangement;
· It decreases decoding complexity.
· Provides a benefit in mitigating ACK/NACK position ambiguity during cell reconfiguration.
In light of these observations, we propose that Option 2 be adopted.
Based on the proposed ordering scheme, we provide the draft CR for Section 5.2.3.1 in TS 36.212 v10.0.0 in Annex B.
4. References

[1]
Chairman’s Notes RAN1#62bis – final.
[2]
R1-105776, “Way forward on Supporting ACK/NAK Payload Larger than 11 Bits in Rel-10 TDD”, CMCC, CATT, CATR, Ericsson, ST-Ericsson, Huawei, HiSilicon, III, New Postcom, Potevio, ZTE.
[3]
R1-105831, “Remaining details on PUCCH format 3 for LTE-A-TDD”, Huawei, HiSilicon
Annex A. Simulation Assumptions

[image: image8.emf]Carrier Frequency2.0 GHz

System Bandwidth10MHz

Channel ModelEPA

Speed3 kmph

Frequency HoppingAt slot boundary

Antenna Configuration1x2

Rx Ant. CorrelationUncorrelated

Channel EstimationIdeal

CP LengthNormal

Signal Bandwidth180kHz

Noise EstimationPractical

Number of UEs1

Table 2 - Simulation Assumptions

Annex B. Suggested draft CR for A/N bit ordering
-------------------------------------Start of draft CR--
5.2.3.1
Channel coding for UCI HARQ-ACK

The HARQ-ACK bits are received from higher layers for each subframe of each cell. Each positive acknowledgement (ACK) is encoded as a binary ‘1’ and each negative acknowledgement (NACK) is encoded as a binary ‘0’. For the case where PUCCH format 3 [2] is configured by higher layers and is used for transmission of the HARQ-ACK feedback information, the HARQ-ACK feedback consists of the concatenation of HARQ-ACK information bits for each of the serving cells. For cells configured with transmission modes 1, 2, 5, 6 or 7 [3], i.e., single codeword transmission modes, 1 bit of HARQ-ACK information,
[image: image9.wmf]k

a

, is used for that cell. For cells configured with other transmission modes, 2 bits of HARQ-ACK information are used for those cells, i.e.,
[image: image10.wmf]1

,

+

k

k

a

a

 with
[image: image11.wmf]k

a

 corresponding to HARQ-ACK bit for codeword 0 and
[image: image12.wmf]1

+

k

a

 corresponding to that for codeword 1.

In case a the transmission of scheduling request coincides in time with the transmission of HARQ-ACK feedback using PUCCH format 3[2], the scheduling request is appended at the end of the sequence of concatenated HARQ-ACK information bits.

Define
[image: image13.wmf]3

format

PUCCH

/

N

A

N

as the number of HARQ-ACK information bits including the possible concurrent transmission of scheduling request

The concatenation of HARQ-ACK information bits for different cells is done according to the following pseudo-code:

Set h = 0
-- cell index: lower indices correspond to lower RRC indices of corresponding cell

Seti = 0
-- DL subframe index
Set j = 0
-- HARQ-ACK information bit index

Set
[image: image14.wmf]DL

cells

N

 to the number of cells configured by higher layers for the UE.

Set
[image: image15.wmf]DL

subframes

N

to the number of DL subframes being reported in this HARQ-ACK feedback.

while h <
[image: image16.wmf]DL

cells

N

i = 0

while i <
[image: image17.wmf]DL

subframes

N

if transmission mode configured in cell
[image: image18.wmf]}

7

,

6

,

5

,

2

,

1

{

Î

i

-- 1 bit HARQ-ACK feedback for this cell

[image: image19.wmf]=

ACK

j

o

~

 HARQ-ACK information bit of this cell

j = j + 1

else

[image: image20.wmf]=

ACK

j

o

~

 HARQ-ACK information bit corresponding to the first codeword of this cell

j = j + 1

[image: image21.wmf]=

ACK

j

o

~

 HARQ-ACK information bit corresponding to the second codeword of this cell

j = j + 1

end if

i = i + 1

end while

h = h + 1
end while

The bit sequence
[image: image22.wmf]ACK

O

ACK

ACK

ACK

o

o

o

1

1

0

,...,

-

is obtained by setting
[image: image23.wmf]ACK

i

ACK

i

o

o

~

2

/

)

1

(

=

-

if i is odd and
[image: image24.wmf]ë

û

ACK

i

ACK

i

O

o

o

ACK

~

2

/

)

(

=

+

if i is even.

For
[image: image25.wmf]11

3

format

PUCCH

/

£

N

A

N

, the sequence of bits
[image: image26.wmf]1

2

1

0

3

format

PUCCH

/

,

,...,

,

,

-

N

A

N

a

a

a

a

 is encoded as follows

[image: image27.wmf](

)

å

-

=

×

=

1

0

,

3

format

PUCCH

/

2

mod

~

N

A

N

n

n

i

n

i

M

a

b

where i = 0, 1, 2, …, 31 and the basis sequences
[image: image28.wmf]n

i

M

,

 are defined in Table 5.2.2.6.4-1.

The output bit sequence
[image: image29.wmf]1

2

1

0

,

,...,

,

,

-

B

b

b

b

b

 is obtained by circular repetition of the sequence
[image: image30.wmf]31

2

1

0

~

,

,...,

~

,

~

,

~

b

b

b

b

[image: image31.wmf](

)

32

mod

~

i

i

b

b

=

where i = 0, 1, 2, …, B-1 and where
[image: image32.wmf]RB

sc

4

N

B

×

=

.

For
[image: image33.wmf]21

11

3

format

PUCCH

/

£

<

N

A

N

, the sequences of bits
[image: image34.wmf]é

ù

1

2

/

2

1

0

3

format

PUCCH

/

,

,...,

,

,

-

N

A

N

a

a

a

a

 and
[image: image35.wmf]é

ù

é

ù

é

ù

1

2

2

/

1

2

/

2

/

3

format

PUCCH

/

3

format

PUCCH

/

3

format

PUCCH

/

3

format

PUCCH

/

,

,...,

,

,

-

+

+

N

A

N

A

N

A

N

A

N

N

N

N

a

a

a

a

 are encoded as follows

[image: image36.wmf](

)

å

-

ú

ú

ù

ê

ê

é

=

×

=

1

2

/

3

format

PUCCH

/

0

,

2

mod

~

N

A

N

n

n

i

n

i

M

a

b

and

[image: image37.wmf]é

ù

å

-

ú

ú

ù

ê

ê

é

-

=

+

÷

ø

ö

ç

è

æ

×

=

1

2

/

3

format

PUCCH

/

3

format

PUCCH

/

3

format

PUCCH

/

0

,

2

/

2

mod

~

~

N

A

N

N

A

N

N

A

n

n

i

n

N

i

M

a

b

where i = 0, 1, 2, …, 23 and the basis sequences
[image: image38.wmf]n

i

M

,

 are defined in Table 5.2.2.6.4-1.

The output bit sequence
[image: image39.wmf]1

2

1

0

,

,...,

,

,

-

B

b

b

b

b

 where
[image: image40.wmf]RB

sc

4

N

B

×

=

is obtained by the alternate concatenation of the bit sequences
[image: image41.wmf]23

2

1

0

~

,

,...,

~

,

~

,

~

b

b

b

b

and
[image: image42.wmf]23

2

1

0

~

~

,

,...,

~

~

,

~

~

,

~

~

b

b

b

b

 as follows

Set i, j = 0

while
[image: image43.wmf]RB

sc

4

N

i

×

<

[image: image44.wmf]j

i

b

b

~

=

,
[image: image45.wmf]1

1

~

+

+

=

j

i

b

b

[image: image46.wmf]j

i

b

b

~

~

2

=

+

,
[image: image47.wmf]1

3

~

~

+

+

=

j

i

b

b

i = i + 4

j = j + 2

end while

-------------------------------------End of draft CR--

_1355812967.unknown

_1355812971.unknown

_1356103612.vsd
Rel-8 RM(32,0) with 8bit trunctation

Rel-8 RM(32,0) with 8bit trunctation

Segmentation

A11,A12,A13,A14,A21,A22,A23,A24

Time/CC ordering + even/odd ordering

B11,B12,B13,B14,B21,B22,B23,B24

_1356103613.vsd
Rel-8 RM(32,0) with 8bit trunctation

Rel-8 RM(32,0) with 8bit trunctation

Segmentation

A11,B11,A12,B12,A13,B13,A14,B14

A21,B21,A22,B22,A23,B23,A24,B24

Time/CC ordering

_1355812973.unknown

_1355812974.unknown

_1355812972.unknown

_1355812969.unknown

_1355812970.unknown

_1355812968.unknown

_1355812965.unknown

_1355812966.unknown

_1355812964.unknown

