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1 Introduction

Transmit beamforming with limited feedback has been studied extensively and demonstrates significant performance gain over its open-loop alternatives. In general, a beamforming codebook needs to be designed and maintained at both transmitter/receiver to facilitate the operation of limited feedback transmit beamforming, where the codebook may be a collection of candidate beamforming vectors. 

A single codebook is desired which performs well in different fading scenarios, for different antenna spacing, antenna patterns and polarization profiles. However, it is difficult to design a codebook that is optimal for all environments and configurations. As a result, the current LTE Rel-8 codebook designs are a compromise of many factors.  The Rel-8 design works reasonably well for SU-MIMO, but for MU-MIMO it has been shown that substantial performance improvement is possible with further codebook optimization. In particular, it has been pointed out in [1] that adaptive codebook is a very promising codebook optimization method by adapting the PMI codebook to the underlying long term channel statistics. 
In this contribution, feedback of the long term channel information is studied and new findings from numerical simulations are presented. 
2 Feedback of Long Term Channel Information for Adaptive Codebook
The broad idea of adaptive codebooks (AC) is to select a fixed baseline codebook and then let the actual PMI codebook be a transformed version of this baseline codebook. The transformation matrix is usually determined by the spatial channel correlation matrix R within a certain time period. From source coding perspective, this is reasonable since the codebook (a discrete representation of the continuous source) should mimic the continuous random source in one way or another. AC is such a technique and possesses a moment-matching property: the adapted codebook follows the underlying channel by mimicking its first and second order statistical moments. 
In particular, let the channel be H. The PMI codebook is adapted by the long term R first. The adapted codebook is then used to quantize the channel H. The quantization operation may be simply written as
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where 
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is the matrix representing the baseline codebook matrix. This process can be illustrated in Figure 1.  In (1), R or some other transformation of R could be used instead of 
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Figure 1. Illustration of the adaptive codebook.

In essence, two components need to be digitized and synchronized between eNB and UE. Firstly, the long term R matrix (of size Nt x Nt with Nt being number of transmit antennas) need be synchronized through e.g. feedback. Secondly, the PMI index under the adapted codebook need be synchronized through e.g. feedback. Notice that each PMI index corresponds to a vector of size Nt x 1 herein. 
As illustrated in Figure 2, the long term R is estimated once every block (of e. g. 100 ms) using the channel estimates from the previous block. The estimated long term R is then used to adapt the PMI codebook for the current block (of e.g. 100ms). Knowledge of long term R is actually somewhat outdated, which is necessary to make the overall scheme causal. 
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Figure 2. The long term R is estimated using channel estimates from the previous block. The estimated long term R is then used to adapt the PMI codebook for the current block (of e.g. 100ms).
In this contribution, two quantization methods are considered for the feedback of long term R.
Quantization method 1: component-wise scalar quantization

Probably component-wise scalar quantization is the most straightforward way to feedback long term R. Since the correlation matrix is Hermitian, all diagonal entries of R are real and each upper-triangle entry complex-conjugates with a lower-triangle entry. Roughly speaking, the overall feedback overhead (in terms of number of distinct real numbers) scales quadratically with the number of transmit antennas Nt. For example a total of 15 real values are needed for a 4x4 correlation matrix, while 63 real values are needed for a 8x8 correlation matrix. Due to this overhead concern, it would be generally undesirable to quantize the long term R using component-wise scalar quantization. 
Quantization method 2: eigen-domain quantization
Eigen-domain quantization selectively quantizes the eigenvectors/eigenvalues of the long term channel correlation matrix. Here let 
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 denote the Nt eigenvectors and  
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 denote the Nt eigenvalues in a decreasing order. If all the eigenvectors and eigenvalues are fedback, the overall feedback overhead in terms of number of distinct real values would scale quadratically with Nt as well. This of course would not help address the overhead concern. 
To reduce the feedback overhead, a reduced rank feedback of R is pursued herein, where only the 2 leading eigenmodes (eigenvalues + eigenvectors) are quantized and the trailing eigenmodes are simply ignored. Compared with the 2 leading eigenvalues, the trailing eigenvalues are generally much smaller. Hence their contribution can be safely ignored without much significance.
Furthermore as seen from Figure 2, the long term R is imperfect itself since it is estimated using outdated channels from the previous block. Thus all the eigenvalues and eigenvectors are subject to this delayed-estimation error. As shown in [3], the trailing eigenvalues (compared with the 2 leading eigenvalues) have inherently much smaller diversity and are more sensitive to the delayed-estimation error. For this reason, it would be also advisable to leave the trailing eigenmodes excluded in the long term R feedback. 

It is interesting to see that the feedback overhead (in terms of number of distinct real values) scales only linearly with the number of transmit antennas when only the 2 leading eigenmodes are included in the feedback. This would be especially attractive for systems with large number of transmit antennas.
Overall, for reduced rank feedback of R, what need be quantized and fedback are the two leading eigenvectors v1, v2 as well as the eigenvalue ratio  = s2/s1. Here the eigenvalue ratio  (0<  <1) characterizes the relative importance of the two leading eigenvectors. Impact of and its quantization is to be studied in section 3 via system level simulations.
3 System level simulations
Adaptive codebook with quantized long term R is tested in a MU-MIMO system level simulator with 4 transmit and 2 receive antennas. A pool of 10 users per sector is assumed, while greedy user scheduling with proportional fairness is carried out. Up to 2 UEs are paired for MU-MIMO, with up to one stream transmission per UE. Zero forcing MU-MIMO beamforming [4] is used at the eNB side and MRC receivers are used at UE sides. Dedicated downlink DMRS are used for both non-adaptive codebook and adaptive codebook. For adaptive codebook, the long term R is estimated once every 100ms and the Rel. 8 4-antenna codebook is adopted as the baseline. Other numerical simulation parameters and assumptions are listed in the appendix. 
Component-wise scalar quantization of R is first tested and the simulation results are tabulated in table 1. Here AC0 refers to the AC scheme with knowledge of unquantized but delayed R, AC1 refers to the AC scheme with R component-wise-quantized using a 4-bit uniform scalar quantizer (see appendix for details). It is seen that component-wise scalar quantization is able to achieve most of the gain out of AC. However, this is achieved at a relatively large feedback overhead. 
	
	AC0: unquantized R
	AC1: scalar quantized R

	
	Avg thruput
	Edge thruput
	Avg thruput
	Edge thruput

	ULA 0.5
	12.4%
	4.4%
	12.2%
	5.3%

	XPO 0.5
	17.7%
	12.8%
	16.8%
	11.0%


Table 1. Comparison of adaptive codebook: unquantized R vs component-wise scalar quantized R.

Eigen-domain quantization is tested next with the simulation results tabulated in table 2. Here AC2a refers to the AC scheme with a reduced rank feedback of R and a 1-bit uniform scalar quantizer for see appendix for details; AC2b refers to the AC scheme with a reduced rank feedback of R and  fixed to be 0.33. The two leading eigenvectors are assumed to be unquantized. Purpose of this is to isolate and find the impact of . The 3rd and the 4th eigenmodes are ignored for the reasons explained above.

	　

　
	AC0: unquantized R
	AC2a: 1-bit quantized
	AC2b: 0 bit quantized  = 0.33

	
	Avg thruput
	Edge thruput
	Avg thruput
	Edge thruput
	Avg 

thruput
	Edge thruput

	ULA 0.5
	12.4%
	4.4%
	12.1%
	4.8%
	11.8%
	2.8%

	XPO 0.5
	17.7%
	12.8%
	17.3%
	11.4%
	17.4%
	11.5%


Table 2. Comparison of adaptive codebook: unquantized R vs reduced rank quantized R.
The following observations can be made: 
1. The reduced rank feedback of R works for AC by feeding back only the 2 leading eigenmodes of R. This can be seen by comparing AC2a/AC2b with AC0 where the quantized version yields very similar results as the unquantized version.

2. The overall performance is not very sensitive to accuracy of . In particular, a rough 1-bit quantizer on   yields quite similar performance. It is even possible to fix  to be a predefined constant value without hurting the performance much. In such a case, no feedback bit need be allocated for .

3. The overall performance achievable by reduced rank R quantization is comparable to the performance achievable by component-wise scalar quantization. This is seen by comparing AC1 in table 1 and AC2a/AC2b in table 2. Remember that component-wise scalar quantization has a feedback overhead on the order of Nt^2 while reduced rank R quantization has a feedback overhead on the order of Nt. 
4 Conclusion

This contribution studies feedback of the long term channel information for adaptive codebook in an MU-MIMO scenario. Component-wise scalar quantization is able to achieve most of the gain out of AC. However, the overall feedback overhead scales quadratically with Nt. For this reason, it is not preferable. 
A reduced rank quantization of R in the eigen-domain is proposed and studied. Numerical simulation results demonstrate that the reduced rank R quantization is able to achieve most of the gain out of AC, while keeping the feedback overhead scale linearly with Nt. The achievable performance is further shown to be insensitive to the eigenvalue ratio , which can help reduce the overall feedback overhead even further.
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Appendix A. System level simulation assumptions

	Parameter
	Assumption

	Carrier frequency
	2GHz

	ISD
	500 meters

	UE speed
	3 km/hr

	Bandwidth
	10 MHz (50RB)

	Traffic Model
	Full Buffer

	Channel model
	SCM

	Number of UEs per sector
	10

	Polarization
	ULA and XPO (cross-polarized)

	Layer number per UE
	1

	PMI feedback type
	wideband PMI feedback

	Max. paired # of UEs 
	2

	Scheduler
	Proportional fairness

	Receiver algorithm
	MRC

	HARQ mechanism
	HARQ-CC, Maximum 3 transmission times

	Antenna configuration
	2D antennas

	Number of antennas
	4x2

	Antenna spacing 
	0.5 lambda @ eNB and 0.5 lambda @ UE; ULA
0.5 lambda @ eNB and 0.5 lambda @ UE; XPO

	Scalar quantization method for AC1: component-wise scalar quantization 
	Each distinct real value x is first normalized to be between -1 and 1 and then quantized using a 4 bit uniform scalar quantizer within the range of [-1, 1]. If -1+k<x<-1+(k+1), then x is quantized to be -1+(k+0.5). Here k=0, 1, 2, …, 15 and =2/2^4. 

	Scalar quantization method for the eigenvalue ratio  in AC2
	The eigenvalue ratio is between 0 and 1 and quantized using a 1 bit uniform scalar quantizer within the range of [0,1]. If k<< (k+1), then  is quantized to be (k+0.5). Here k=0, 1 and =1/2^1.

	Quantization method for the 2 leading eigenvectors
	perfect
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