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1 Introduction
Channel diagonalisation and interference nulling are generally regarded as attractive precoding strategies for single-cell MU-MIMO and CoMP schemes for boosting system spectral efficiency and user experience. In fact, the primary goal for the eNBs in these MIMO modes is to minimise the interference generated by multiplexing spatial layers to different UEs and/or minimise the interference caused by some unintended users. This precoding strategy requires some knowledge of the UE’s channel eigen-vectors or a linear combination thereof to enable the eNBs to form the transmit beams along suitable spatial direction [1]-[4]. This explicit feedback can be viewed as complementary to the implicit feedback supporting SU-MIMO in LTE Rel-8. Implicit feedback, whereby the UE tests hypotheses on the spatial processing at both sides of the communication link and reports the preferred one, is effective in maximising the beamforming gain when a single user is being targeted, but is restrictive for interference nulling capability, because the UEs are unable to predict accurately the interference experienced by other UEs.

In this contribution we describe a possible way of reducing the dimension of the channel eigenvectors before quantisation and maintaining the information on the sub-space spanned by these eigenvectors. This size reduction technique or other similar techniques allow substantial overhead reduction in explicit feedback as discussed in next section.

2 Explicit spatial feedback: dimensionality reduction

In this section we make some general considerations on reporting the channel spatial structure for single-cell MU-MIMO and CoMP. We point out that the minimal channel information required at the eNBs for channel diagonalisation/interference nulling is the sub-space spanned by a set of relevant channel eigenvectors, rather than the exact eigenvectors. We show that signalling this sub-space information inherently requires significantly less overhead compared to signalling the exact eigenvectors.

Let us assume that the UE has to report the channel corresponding to a single cell, typically the strongest (serving) cell. The channel matrix is denoted by
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, representing the channel spatial structure that the UE wants to feedback to the cell eNB, and let 
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orthonormal matrix whose columns are the 
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eigenvectors. These vectors can be obtained, for example, from the eigen-value decomposition (EVD) of the average Gram matrix of the channel, 
[image: image10.wmf]†

[]

E

HH

, or from the singular-value decomposition (SVD) of 
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Dimensionality reduction methods can be applied to reduce the degrees of freedom and therefore the number of coefficients needed in the representation of 
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. Note that we can assume, without loss of generality, that one element (e.g. the first) in each eigenvector 
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 is real-valued, by EVD or SVD construction. The 
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vectors are also unit-norm and orthogonal. If we decide to represent them separately, the condition on the norm imposes just one constraint per vector. Therefore, the degrees of freedom for each vector, i.e. the number of (complex) coefficients required to represent each vector is 
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coefficients to represent the 
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 vectors. This representation is clearly redundant as we omitted to consider the orthogonality constraints between the vectors. In fact, for the first vector we have just one constraint on the norm, but for the second vector one constraint is imposed by the norm and one by the orthogonality to the first vector, for the third vector there are two orthogonality constraints and one norm constraint and so forth for the remaining vectors. Therefore, the overall degrees of freedom in the representation are reduced to
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However, we can further reduce the dimensionality of the channel feedback by observing that, for the purpose of interference nulling, the transmitters do not need to know the individual eigenvectors 
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, but rather the vector sub-space spanned by these vectors. In other words, a transmitter should be able to reconstruct any linear combination of the columns of 
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, where 
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unitary matrix, unknown to the transmitter. Clearly, knowing 
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does not affect the nulling capability of the eNB for a precoding vector belongs to the null space of 
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only if it belongs to the null space of 
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. However, we note that, by reconstructing a matrix 
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the eNB no longer knows exactly the direction of each individual eigenvector: this may not be a significant limitation for MU-MIMO and CoMP scheme because the priority in these MIMO modes is interference reduction and the eNB can still ensure a beamforming gain in a range between the strongest eigenvector and the 
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-th strongest eigenvector. The dimensionality of this sub-space representation can be obtained by subtracting from the degrees of freedom of 
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, those of the square matrix GOTOBUTTON ZEqnNum568328  \* MERGEFORMAT , still given by 
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 after replacing  GOTOBUTTON ZEqnNum568328  \* MERGEFORMAT with 
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. Thus, the minimum number of degrees of freedom associated with the sub-space representation of the eigenvectors is given by
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 It is immediate to verify that 
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 for (2)
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< GOTOBUTTON ZEqnNum227301  \* MERGEFORMAT . Therefore, it is possible to derive a sub-space description of the vectors 
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coefficients per eigenvector. Let us call 
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matrix that results from this size reduction. We can then proceed with some form of scalar or vector quantisation of 
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, which is the vectorised form of 
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, as we would do for the original set of eigenvectors. If vector quantisation is adopted, then the codebook should be optimised for the typical distribution of 
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before the quatisation stage to increase the source coding gain. In the next section we show how the eigenvector description 
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 may be derived at a very modest cost in terms of additional complexity for both the UE and eNB.
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Table 1. Dimensionality reduction techniques when signalling 
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channel eigenvectors. 
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is the number of transmit antennas at the eNB. 

In Table 1 we summarise the reduction in number of coefficients achievable by separate, joint and sub-space representation of the channel eigenvectors, when signalling 
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eigenvectors.

For example, in a 
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 system, with codebook-based vector quantisation of the feedback vectors and where the UE needs to report 
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 eigenvectors, the separate eigenvector representation (first column in the Table 1) requires a dimension-3 codebook. The joint eigenvector representation (second column in the Table 1) needs two different codebooks, one of dimension 3 and one of dimension 2 (average size of 2.5 per eigenvector). The sub-space representation (third column in Table 1) requires a dimension-2 codebook, thereby achieving a dimensionality reduction of 33% with respect to the baseline.

3 Explicit spatial feedback via sub-space signalling

In this section we describe one possible technique for representing the sub-space information associated with a set of channel eigenvectors with the minimum number of coefficients.

Let us assume that a UE needs to report a set of 
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We then take the SVD of 
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where 
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 matrix to be quantised and fed back is given by
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We note that any kind of scalar or vector quantisation that is applicable to 
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. However, the vector dimensionality is now reduced to the minimum number of coefficients needed to represent the sub-space spanned by the 
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 coefficients per vector, as discussed in the previous section. 

In the case 
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 is unit-norm and we can assume, without loss of generality, that one element (e.g. the first) in each eigenvector is real-valued, by EVD or SVD construction.

Once a quantised version of 
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The basis vectors reconstructed by the eNB, 
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 are then given by the columns of the matrix, if 
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Let us consider the case
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[image: image92.wmf]()

npp

-<

 non-zero singular values and 
[image: image93.wmf]s

Σ

has size
[image: image94.wmf]()

n

p

p

-

´

. Therefore, we need to extend 
[image: image95.wmf]s

Σ

with zeros before plugging it in (8)

, i.e.



[image: image96.wmf](2)

s

s

pnp

-´

æö

®

ç÷

èø

Σ

Σ

0

.

The motivation for this zero-padding operation should be clear from the geometrical explanation given in the Appendix.

It is not hard to show that, if 
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 (see the Appendix).
4 Performance results

In this section we provide some link-level performance results to compare two CSI feedback techniques: rank-2 sub-space signalling and strongest eigenvector signalling. Note that signalling the strongest channel eigenvector is a special case of sub-space signalling when the feedback rank is 1.

This study covers single-cell multi user MIMO downlink transmission. For fairness of comparison the same feedback overhead and time/frequency granularity is used for both CSI feedback schemes. Each UE reports one CSI and one CQI value every 2 PRBs. The CSI and CQI are calculated on the centre sub-carrier of a feedback block. The CQI report is the same for both feedback techniques. The CSI report consists of a codebook index obtained from vector quantisation (VQ) of 
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 for sub-space signalling. For the eigenvector feedback, the CSI is also a codebook index obtained from vector quantisation of the strongest channel eigenvector. The VQ codebook is optimised in both cases by using the LBG-split (Linde-Buzo-Gray) algorithm [5], which is a generalisation of the Lloyd’s algorithm. The CQI is calculated from the squared strongest singular value of the channel and quantised using the 15 SINR thresholds of the MCS table.
The eNB operates user scheduling and generates a zero forcing precoder from the reported CSIs and CQIs, for each feedback block, i.e. every 2 PRBs. A single spatial layer is allocated to each selected UE. The user selection criterion aims at maximising the cell throughput by using a simple greedy strategy: at each iteration of the scheduling algorithm the “best” UE in the remaining set of UEs, i.e. the UE for which the highest SINR is predicted, is added to the scheduled set of UEs. Note that the precoder and the SINR estimates are recalculated when a user is added, and the SINR estimates depend both on the reported CQI and CSI.  The selection procedure stops when the maximum number of co-scheduled UEs is reached, or when adding a UE no longer increases the predicted throughput. The same scheduler and ZF algorithm are used for both tested feedback schemes. Note that, because of the user selection procedure, the number of co-scheduled users in a block of PRBs may vary between 1 and 4 (number of transmit antennas).
The eNB then performs link adaptation by choosing one MCS level for each co-scheduled UE based on the average predicted SINR over the blocks of PRBs where the UE has been scheduled. No HARQ is implemented in this set of results.
The data demodulation is made possible by the dedicated reference signals (DM-RS). The DM-RS structure used is the baseline assumption agreed in RAN1#58 for normal sub-frames and normal cyclic prefix [6].
The main simulation parameters are summarised in Table 2.

	Channel model
	SCM Urban Micro

	Carrier frequency
	2GHz

	eNB antenna configuration
	4 uncorrelated

	UE antenna configuration
	2,4 with 0.5 lambda spacing

	Number of UEs
	5

	Number of layers per scheduled UE
	1

	Transmission bandwidth
	5MHz

	UE velocity
	3 km/h

	PDCCH/PDSCH configuration
	3/11 OFDM symbols per sub-frame

	Scheduling in time
	Scheduling in every downlink sub-frame

	Number of allocated PRB
	2 contiguous PRB

	Channel coding (PDSCH)
	Rel-8 turbo coding (8 iterations)

	MCS and link adaptation
	Rel-8 MCS and link adaptation enabled

	Detector
	MMSE

	Feedback quantities
	CSI + CQI

	Feedback granularity
	2 PRB

	Feedback quantisation
	CSI:  vector quantisation, 4 or 6 bit codebook, codebook optimised by LBG-split algorithm
CQI: 4 bits

	CSI feedback type
	Eigenvector sub-space (2 strongest eigenvectors),
Strongest eigenvector

	Precoding scheme
	Zero-forcing

	UE scheduler
	Greedy user selection for maximum cell throughput

	Common reference signal configuration
	4-port Rel-8 CRS in every sub-frame

	CSI/CQI feedback delay
	5 sub-frames

	Channel estimation for CSI/CQI calculation
	2D-MMSE

	Demodulation reference signal configuration
	Rank 1-2:  12 RE, CDM, OCC (length 2) in every PDSCH sub-frame

Rank 3-4:  24 RE, CDM+FDM, OCC (length 2) in every PDSCH sub-frame

	Channel estimation for demodulation
	2D-MMSE


Table 2. Simulation parameters for single-cell MU-MIMO
The simulation results confirms our analysis that signalling the eigenvector sub-space provides extended CSI to the eNB, compared to signalling the strongest eigenvector. This extra information allow the eNB to remove cross-layer interference more effectively, thus co-scheduling more UEs on average and achieving higher cell throughput.

At 12dB SNR sub-space signalling achieves a cell throughput gain of 8.2% over signalling the strongest eigenvector for a 4x2 configuration, and a gain of 9.6% for a 4x4 configuration. The average number of co-scheduled users at 12dB SNR increases respectively by 12.1% and 15.7% for the two antenna configurations.
We note that sub-space signalling is slightly worse than eigenvector signalling for low SNR. This is because for low SNR it is more likely that a single user is scheduled per block of RBs. When this happens there is no cross-layer interference, so performance depends only on maximising the channel gain of the scheduled user. In this case, signalling the strongest eigenvector, i.e. a rank-1 sub-space, is a better strategy as it identifies the spatial direction of maximum gain more accurately.
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Figure 1. 
Throughput comparison of eigenvector and sub-space signalling for 4x2 antenna configuration, single-cell MU-MIMO transmission with 2RB feedback granularity, 4bit-CSI index and 4bit-CQI.
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Figure 2. 
Throughput comparison of eigenvector and sub-space signalling for 4x4 antenna configuration, single-cell MU-MIMO transmission with 2RB feedback granularity, 6bit-CSI index and 4bit-CQI.
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Figure 3. 
Comparison between average number of allocated users of eigenvector and sub-space signalling for 4x2 antenna configuration, single-cell MU-MIMO transmission with 2RB feedback granularity, 4bit-CSI index and 4bit-CQI.
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Figure 4. 
Comparison between average number of allocated users of eigenvector and sub-space signalling for 4x4 antenna configuration, single-cell MU-MIMO transmission with 2RB feedback granularity, 6bit-CSI index and 4bit-CQI.
5 Conclusion
Dimensionality reduction techniques, like sub-space representation, can be used to reduce the number of coefficients in the representation of a set of channel eigenvectors (or singular vectors).

Whilst feedback for single-cell SU-MIMO can be improved by extending the implicit LTE Rel-8 feedback mechanisms, explicit feedback requires signalling new quantities, namely the channel spatial structure, which is key to enable channel diagonalisation and interference nulling precoding.

The minimal channel information required at the eNBs for channel diagonalisation/interference nulling is the sub-space spanned by a set of relevant channel eigenvectors (typically the strongest), rather than the exact eigenvectors. We show that signalling this sub-space information inherently requires significantly less overhead compared to signalling the exact eigenvectors, when more than one eigenvector is reported.

This contribution presents one possible way of reducing the dimensionality of a set of channel eigenvectors for explicit feedback, by representing their sub-space with the minimum number of coefficients. In particular, sub-space representation achieves the largest possible size reduction: when representing 
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eigenvectors, each length-
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singular vector is represented by 
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coefficients. After this size reduction, scalar of vector quantisation can be applied to the reduced-size vectors.

Sub-space representation of the strongest channel eigenvectors is an efficient way of signalling explicit channel information to allow channel diagonalisation and interference nulling in MU-MIMO and CoMP schemes, and is therefore worth considering for future evaluation of LTE-A explicit feedback mechanisms.
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Appendix

We show that the column vectors in the matrix 
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 reconstructed by the eNB are a linear combination of the channel eigenvectors  GOTOBUTTON ZEqnNum873485  \* MERGEFORMAT . Let us assume that 
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where the singular values are the sines of the principal angles identified above and 
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 . Hence, we can re-write the top block of the reconstructed matrix (8)
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and conclude that , if 
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